Heat from burning fuel warms the walls of the firebox section of the furnace in
A. a hot-water heating system.
B. a hot-air heating system.
C. a compressor compartment.
D. an evaporation system.
Answer:
r = 2161.9 m
Explanation:
Aerodynamic lift(L) is perpendicular to the wing, which is tilted 40 degrees to the horizontal.
Since the plane is moving in a horizontal circle, the vertical component of the lift must cancel the weight W of the airplane, but the horizontal component is the centripetal force that keeps it in a circle.
L is perpendicular to wing at angle θ with respect to horizontal
Thus,
Vertical component of lift is:
L cosθ = W = mg
Thus, m = L cosθ / g - - - - (eq1)
Horizontal component of lift is:
L sinθ = centripetal force = mv² / r - - - - (eq2)
Combining equations 1 and 2,we have;
L sinθ = (L cosθ / g)(v² / r)
L cancels out on both sides to give;
tanθ = v²/ rg
r = v² / (g tanθ)
We are given;
velocity; v = 480 km/hr = 480 x 10/36 = 133.33 m/s
r = 133.33²/[(9.8) tan(40)] = 2161.9 m
<h3><u>Answer;</u></h3>
- In a freshwater lake
- In the atmosphere
- In Earth's mantle
<h3><u>Explanation</u>;</h3>
- <em><u>Convection currents are types that cause the process of convection, which the transfer of heat energy that occurs in fluids.</u></em>
- <em><u>Convection currents are circular patterns that occurs in fluids such that the less dense warm fluids rises up while denser cold fluids sinks, </u></em>it is this movement of less dense warm fluid and denser cold fluids that creates circular patterns that causes the process of convection to take place.
- <em><u>Convection currents may occur in the atmosphere where warm air rises while cold denser air sinks or moves towards the bottom, it may also occur in the mantle of the Earth and water or water bodies such as lakes.</u></em>