True I think sorry if not correct, I only want to help :)
Answer:
The current is increasing at a rate of 0.32 ampere per second.
Explanation:
The voltage of the resistor is modelled after Ohm's Law, which states that voltage is directly proportional to current:
(1)
Where:
- Voltage, measured in volts.
- Current, measured in amperes.
- Resistance, measured in ohms.
An expression for the rate of change in voltage is found by Differential Calculus:

(2)
Where:
- Rate of change in voltage, measured in volts per second.
- Rate of change in current, measured in amperes per second.
- Rate of change in resistance, measured in ohms per second.
If we know that
,
,
and
, then the rate of change in current is:
(3)

The current is increasing at a rate of 0.32 ampere per second.
Answer:
v = 31.3 m / s
Explanation:
The law of the conservation of stable energy that if there are no frictional forces mechanical energy is conserved throughout the point.
Let's look for mechanical energy at two points, the highest where the body is at rest and the lowest where at the bottom of the plane
Highest point
Em₀ = U = m g y
Lowest point
= K = ½ m v²
As there is no friction, mechanical energy is conserved
Em₀ =
m g y = ½ m v²
v = √ 2 g y
Where we can use trigonometry to find and
sin 30 = y / L
y = L sin 30
Let's replace
v = RA (2 g L sin 30)
Let's calculate
v = RA (2 9.8 100.0 sin30)
v = 31.3 m / s
The net force on q2 will be 1.35 N
A force in physics is an effect that has the power to alter an object's motion. A mass-containing object's velocity can vary, or accelerate, as a result of a force. Intuitively, a push or a pull can also be used to describe force. Being a vector quantity, a force has both magnitude and direction.
Given Particles q1, q2, and q3 are in a straight line. Particles q1 = -5.00 x 10-6 C,q2 = +2.50 x 10-6 C, and q3 = -2.50 x 10-6 C. Particles q₁ and q2 are separated by 0.500 m. Particles q2 and q3 are separated by 0.250 m.
We have to find the net force on q2
At first we will find Force due to q1
F = 9 × 10⁹ × 5 × 10⁻⁶ × 2.5 × 10⁻⁶ / 0.5²
F = 450 × 10⁻³
F₁ = 0.45 N (+)
Now we will find Force due to q2
F = 9 × 10⁹ × 5 × 10⁻⁶ × 2.5 × 10⁻⁶ / 0.25²
F = 1800 × 10⁻³
F₂ = 1.8 N (-)
So net force (F) will be
F = F₂ - F₁
F = 1.8 - 0.45
F = 1.35 N
Hence the net force on q2 will be 1.35 N
Learn more about force here:
brainly.com/question/25573309
#SPJ10
Answer:
continental slope
Explanation:
the continental shelf is after the land and before the continental rise as it's in the diagram of an ocean floor