Answer:
electric energy ---> heat energy or A.
Explanation:
the name says it all
The time required to reduce the concentration from 0.00757 M to 0.00180 M is equal to 1.52 × 10⁻⁴ s. The half-life period of the reaction is 9.98× 10⁻⁵s.
<h3>What is the rate of reaction?</h3>
The rate of reaction is described as the speed at which reactants are converted into products. A catalyst increases the rate of the reaction without going under any change in the chemical reaction.
Given the initial concentration of the reactant, C₀= 0.00757 M
The concentration of reactant after time t is C₁= 0.00180 M
The rate constant of the reaction, k = 37.9 M⁻¹s⁻¹
For the first-order reaction: 
0.00180 = 0.00757 - (37.9) t
t = 1.52 × 10⁻⁴ s
The half-life period of the reaction: 

Half-life of the reaction = 9.98 × 10⁻⁵s
Learn more about the rate of reaction, here:
brainly.com/question/13571877
#SPJ1
since the concentration of Carbon Dioxide will increase, it would make Q > K, cause equilibrium to shift in the direction with less moles of gas to alleviate the extra pressure. In this case, the reaction will shift left because there are fewer moles of gas present.
Answer:
The five assumption of Kinetic molecular theory are given below.
Explanation:
Kinetic molecular theory of gasses stated that,
1) Gases consist of large number of smaller particles which are distance apart from each others.
2) The gas molecules collide with each other and also with wall of container and this collision is elastic.
3) Gas molecules are in continuous random motion and posses kinetic energy.
4) The forces of attraction between gas molecules are very small and considered negligible.
5) The temperature of gas is directly proportional to average kinetic energy of gas molecules.
Answer:
Explanation:
NH₄NO₃ = NH₄⁺ +NO₃⁻
heat released by water = msΔ T
m is mass , s is specific heat and ΔT is fall in temperature
= 50 x 4.18 x ( 22 - 16.5 ) ( mass of 50 mL is 50 g )
= 1149.5 J .
This heat will be absorbed by the reaction above .
q for the reaction = + 1149.5 J
2 )
molecular weight of NH₄NO₃ = 80
No of moles reacted = 5/80 = 1 / 16 moles.
3 )
5 g absorbs 1149.5 J
80 g absorbs 1149.5 x 16 J
= 18392 J
= 18.392 kJ.
= + 18.392 kJ
ΔH = 18.392 kJ / mol