Answer:
Matthias Jakob Schleiden
Explanation:
The cell was initially discovered by Robert Hooke, but Schleiden developed the theory.
Hope this helps! :)
You're looking for the number of moles of H2, and you have 6.0 mol Al and 13 mol HCL.
For the first part, you have to make your way from 6.0 mol of Al to mol of H2, right? For that to happen, you need to make a conversion factor that will cancel the mol Al, in such case use the 2 moles of Al from your equation to cancel them out. At the top of the equation, you can use the number of moles of H2 from the equation and find the moles that will be produced for the H2.
6.0mol Al x 3 mol H2/2 mol Al = 9 mol H2
For the second part, you have to make the same procedure, make a conversion factor that will cancel the mol of HCL and for that you need to use the 6 mol HCL from your equation, and at the numerator you can put the 3 mol of H2 from the equation so that you can find the number of moles of H2 that will be produced.
13 mol HCL x 3 mol H2/6 mol HCL = 6.5 mol H2
As it can be seen, HCL produces the less amount of H2 moles. Therefore, the reaction CANNOT produce more than 6.5 mol H2, in that case 6.5 mol will be the maximum number of moles that will be produced at the end because HCL does not have enough to produce more than 6.5 mol.
In that case HCL is the limiting reactant because it limits that will be produced, and so the answer is B!
Answer:
See the answer below , please.
Explanation:
In a decomposition reaction, a certain compound is "broken" to give two or more different products.
An example for compound AB, giving as products A and B:
AB -> A + B
In the case of water:
2H20 -> 2H2 + 02, water decomposes giving Hydrogen and Oxygen
Answer:
-2.86x10³ kJ
Explanation:
The enthalpy of a reaction (ΔH) is defined as the heat produced or consumed by a reaction. In the reaction:
2 C₂H₆(g) + 7 O₂(g) → 4 CO₂(g) + 6 H₂O(g)
The ΔH is the heat envolved in the reaction per 2 moles of C₂H₆. 1.43x10³ kJ are involved when 1 mole reacts. Thus, when 2 moles react, involved heat is:
1.43x10³ kJ ₓ 2 = <em>2.86x10³ kJ</em>. As the reaction is a combustion reaction (Produce CO₂ and H₂O), the heat involved in the reaction is <em>PRODUCED, </em>that means ΔH is negative, <em>-2.86x10³ kJ</em>
1.Decomposition i think
2.boiling
3.It is a solid at room temperature and pressure.
4.<span>The base donates a hydrogen ion.
5.That causes the oxidation of another element
6.</span>MnO2
7.When a substance is reduced, electrons are lost.
8.True I think
9.False
10.True
Hope these are correct