Answer:
Q = 3139.5 j
Explanation:
Given data:
Mass = 50 g
Initial temperature = 25°C
Final temperature = 95°C
Specific heat capacity = 0.897 j/g.°C
Heat absorbed = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
ΔT = 95°C - 25°C
ΔT = 70°C
Q = m.c. ΔT
Q = 50 g× 0.897 J/g.°C ×70°C
Q = 3139.5 j
Answer: The change in boiling point for 397.7 g of carbon disulfide (Kb = 2.34°C kg/mol) if 35.0 g of a nonvolatile, nonionizing compound is dissolved in it is 
Explanation:
Elevation in boiling point:
where,
= boiling point of solution = ?
= boiling point of pure carbon disulfide=
= boiling point constant =
m = molality
i = Van't Hoff factor = 1 (for non-electrolyte)
= mass of solute = 35.0 g
= mass of solvent (carbon disulphide) = 397.7 g
= molar mass of solute = 70.0 g/mol
Now put all the given values in the above formula, we get:
Therefore, the change in boiling point is 
I think <span>500 m but i just think i dont know </span>
Like all objects, rockets are governed by Newton's Laws of Motion. The First Law describes how an object acts when no force is acting upon it. So, rockets stay still until a force is applied to move them. Newton's Third Law states that "every action has an equal and opposite reaction".