Answer:
2.53 L is the volume of H₂ needed
Explanation:
The reaction is: C₁₈H₃₀O₂ + 3H₂ → C₁₈H₃₆O₂
By the way we can say, that 1 mol of linolenic acid reacts with 3 moles of oxygen in order to produce, 1 mol of stearic acid.
By stoichiometry, ratio is 1:3
Let's convert the mass of the linolenic acid to moles:
10.5 g . 1 mol / 278.42 g = 0.0377 moles
We apply a rule of three:
1 mol of linolenic acid needs 3 moles of H₂ to react
Then, 0.0377 moles will react with (0.0377 . 3 )/1 = 0.113 moles of hydrogen
We apply the Ideal Gases Law to find out the volume (condition of measure are STP) → P . V = n . R . T → V = ( n . R .T ) / P
V = (0.113 mol . 0.082 L.atm/mol.K . 273.15K) 1 atm = 2.53 L
Answer:
Controlling the environment is the most key procedures for getting good results.
Explanation:
The control environment for an experiment is the essential part for getting good results. In control environment, there is no or less chances of disruption
from the external environment which can cause the results of the data more acceptable. So the scientists prefers laboratory for performing experiment as compared to outer environment. So in my opinion for getting better results, the control environment is the most necessary experimental procedure.
Answer:
0.84 mol
Explanation:
Given data:
Moles of ZnCl₂ produced = ?
Mass of Zn = 55.0 g
Solution:
Chemical equation:
2HCl + Zn → ZnCl₂ + H₂
Number of moles of Zn:
Number of moles = mass / molar mass
Number of moles = 55.0 g/ 65.38 g/mol
Number of moles = 0.84 mol
Now we will compare the moles of Zn with ZnCl₂ from balance chemical equation.
Zn : ZnCl₂
1 : 1
0.84 : 0.84
So from 55 g of Zn 0.84 moles of zinc chloride will be produced.