Answer:
Explanation:
<u>Problem</u>:
In a gender based experiment, the blood pressure of different ages of men is been checked and recorded to determine if there is any correlation. What will be the independent, dependent and controlled variables?
<u>Answer</u>:
A controlled variable is the variable that is left constant throughout the course of an experiment. The controlled variable here is the gender.
A dependent variable is the variable that is been determined or measured during the course of an experiment. The dependent variable here is the blood pressure.
An independent variable is the variable that is intentionally or decidedly altered during the course of an experiment. The independent variable here is the age.
<span>Why are leaves different colors?</span><span>
The chlorophyll breaks down</span>
1-H NMR spectroscopy tool will be used for distinguishing a sample of 1,2,2-tribromopropane from 1,1,2-tribromopropane.
The preferred method for determining or validating the structure of organic molecules or those containing protons is H NMR. When compared to other nuclei, a solution-state proton spectrum may be obtained relatively quickly, and it contains a wealth of knowledge regarding a compound's structure.
It can be calculated by simply counting the number of unique hydrogens on one side of the symmetry plane will give you the count of signals individual molecules emit in a 1H NMR spectrum.
Therefore, 1-H NMR spectroscopy tool will be used for distinguishing a sample of 1,2,2-tribromopropane from 1,1,2-tribromopropane.
To know more about 1-H NMR spectroscopy
brainly.com/question/20111886
#SPJ4
Answer:
0.292 g/mL.
Explanation:
From the question given above, the following data were obtained:
Mass of object = 28.1 g
Volume of object = 96.2 mL
Density of object =..?
Density of an object is simply defined as the mass of the object per unit volume of the object. Mathematically, it can be expressed as:
Density = mass / volume
With the above formula, we can obtain the density of the object as follow:
Mass of object = 28.1 g
Volume of object = 96.2 mL
Density of object =..?
Density = mass / volume
Density = 28.1 / 96.2
Density of object = 0.292 g/mL
Thus the density of the object is 0.292 g/mL
The most reasonable way to measure absolute zero would have been to extrapolate the ideal gas law.
<h3>What is Absolute zero?</h3>
This is referred to the temperature at which a thermodynamic system has the lowest form of energy.
Guillaume Amontons used gas equation to prove that absence of heat was theoretically possible which would have involved only extrapolating the ideal gas law.
Read more about Absolute zero here brainly.com/question/18560146
#SPJ1