Answer:
At the high temperatures of the inner solar nebula, the small proto-planets were too hot to hold the volatile gases that dominated the solar nebula. These proto-planets were Earth, Mars, Venus, and Mercury.
Explanation:
The materials that accreted into the early Earth were probably added piecemeal, without and particular order. The early earth was very hot from gravitational compression, impacts and radioactive decay; the earth was partially molted. The denser metallic liquids sank to the center of the Earth and less denser silicate liquids rose to the top. In this way the Earth differentiated very quickly into a metallic, mostly iron core and a rocky silicate mantle.
Answer:


Explanation:
The speed is the distance traveled divided by the time taken. The distance traveled in 24hs while standing on the equator is the circumference of the Earth
, where
is the radius of the Earth.
We have then:

And then we use the centripetal acceleration formula:

The frequency of the wave is 4 Hz
Answer:
<h2>50 N</h2>
Explanation:
The force required can be found by using the formula

w is the workdone
d is the distance
From the question we have

We have the final answer as
<h3>50 N</h3>
Hope this helps you
Answer: v = 0.6 m/s
Explanation: <u>Momentum</u> <u>Conservation</u> <u>Principle</u> states that for a collision between two objects in an isolated system, the total momentum of the objects before the collision is equal to the total momentum of the objects after the collision.
Momentum is calculated as Q = m.v
For the piñata problem:


Before the collision, the piñata is not moving, so
.
After the collision, the stick stops, so
.
Rearraging, we have:


Substituting:

0.6
Immediately after being cracked by the stick, the piñata has a swing speed of 0.6 m/s.