1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
umka2103 [35]
4 years ago
7

A hypothesis must be ___________ in order to be termed a scientific hypothesis. ethical

Physics
1 answer:
Alex73 [517]4 years ago
3 0
A hypothesis must be TESTABLE in order to be termed a scientific hypothesis.

-Hope this helps
You might be interested in
A vector has an x component of 25.0 units and a y
sammy [17]
Here is the answer to your question

8 0
3 years ago
Which bright solar feature is shown in the picture above?
Ghella [55]

Answer : (B) Prominence

Explanation :

A large, glittering and gaseous characteristic which is extending outward from the surface of the sun is called <em>Prominence</em>.

<em>Photosphere</em> is one of the layer of sun where the prominence are anchored and then they move into the corona of the sun.

<em>Corona</em> is a region in the surface of the sun which is the constituent of hot ionized gases (plasma).

The prominence consists of colder plasma and this prominence plasma is much more shining and denser as compared to coronal plasma.

Hence, the correct option is (B) Prominence.

6 0
4 years ago
Read 2 more answers
Un contratista colocará azulejo importado en la pared de una cocina, que mide 6 metros de ancho y 4 metros de alto.
Olin [163]
No se neta Srry pero si hablo espanol
3 0
3 years ago
A man is standing on a weighing machine on a ship which is bobbing up and down with simple harmonic motion of period T=15.0s.Ass
STALIN [3.7K]

Well, first of all, one who is sufficiently educated to deal with solving
this exercise is also sufficiently well informed to know that a weighing
machine, or "scale", should not be calibrated in units of "kg" ... a unit
of mass, not force.  We know that the man's mass doesn't change,
and the spectre of a readout in kg that is oscillating is totally bogus.

If the mass of the man standing on the weighing machine is 60kg, then
on level, dry land on Earth, or on the deck of a ship in calm seas on Earth,
the weighing machine will display his weight as  588 newtons  or as 
132.3 pounds.  That's also the reading as the deck of the ship executes
simple harmonic motion, at the points where the vertical acceleration is zero.

If the deck of the ship is bobbing vertically in simple harmonic motion with
amplitude of M and period of 15 sec, then its vertical position is 

                                     y(t) = y₀ + M sin(2π t/15) .

The vertical speed of the deck is     y'(t) = M (2π/15) cos(2π t/15)

and its vertical acceleration is          y''(t) = - (2πM/15) (2π/15) sin(2π t/15)

                                                                = - (4 π² M / 15²)  sin(2π t/15)

                                                                = - 0.1755 M sin(2π t/15) .

There's the important number ... the  0.1755 M.
That's the peak acceleration.
From here, the problem is a piece-o-cake.

The net vertical force on the intrepid sailor ... the guy standing on the
bathroom scale out on the deck of the ship that's "bobbing" on the
high seas ... is (the force of gravity) + (the force causing him to 'bob'
harmonically with peak acceleration of  0.1755 x amplitude).

At the instant of peak acceleration, the weighing machine thinks that
the load upon it is a mass of  65kg, when in reality it's only  60kg.
The weight of 60kg = 588 newtons.
The weight of 65kg = 637 newtons.
The scale has to push on him with an extra (637 - 588) = 49 newtons
in order to accelerate him faster than gravity.

Now I'm going to wave my hands in the air a bit:

Apparent weight = (apparent mass) x (real acceleration of gravity)

(Apparent mass) = (65/60) = 1.08333 x real mass.

Apparent 'gravity' = 1.08333 x real acceleration of gravity.

The increase ... the 0.08333 ... is the 'extra' acceleration that's due to
the bobbing of the deck.

                        0.08333 G  =  0.1755 M

The 'M' is what we need to find.

Divide each side by  0.1755 :          M = (0.08333 / 0.1755) G

'G' = 9.0 m/s²
                                       M = (0.08333 / 0.1755) (9.8) =  4.65 meters .

That result fills me with an overwhelming sense of no-confidence.
But I'm in my office, supposedly working, so I must leave it to others
to analyze my work and point out its many flaws.
In any case, my conscience is clear ... I do feel that I've put in a good
5-points-worth of work on this problem, even if the answer is wrong .

8 0
3 years ago
In the doorknob shown above, when the handle is rotated a distance of 189 millimeters, the spindle is rotated a distance of 27 m
Alisiya [41]

If my math is right its A) 7

because 189 divided by 27 is 7

7 0
4 years ago
Read 2 more answers
Other questions:
  • 36 is what percent of 150?<br>​
    12·2 answers
  • A stretch spring has an elastic potential energy of 35 J when it is stretched 0.54m. What is the spring constant of the spring?
    15·1 answer
  • What causes a bolt of lightning?
    10·2 answers
  • Keisha drew a diagram to compare two of the fundamental forces. A venn diagram of 2 intersecting circles with the left circle la
    8·1 answer
  • DetermiOne of the lines in the Balmer series of the hydrogen atom emission spectrum is at 397 nm. It results from a transition f
    8·1 answer
  • A current of 12 amps is measured in a circuit with a total resistance of 9.0 ohms. What is the size of the voltage source that s
    5·2 answers
  • Si un cuerpo adquiere una carga de -0,02 C, ha ganado o ha perdido electrones? Cuantos?
    7·1 answer
  • How to test the pH level of a soap?​
    14·2 answers
  • The force that slows down a soccer ball rolling on the grass is the same force used to start a campfire. True or False
    9·2 answers
  • What is the kinetic energy of a 0.5 kg soccer ball that is traveling at a
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!