Answer:
The drill's angular displacement during that time interval is 24.17 rad.
Explanation:
Given;
initial angular velocity of the electric drill,
= 5.21 rad/s
angular acceleration of the electric drill, α = 0.311 rad/s²
time of motion of the electric drill, t = 4.13 s
The angular displacement of the electric drill at the given time interval is calculated as;

Therefore, the drill's angular displacement during that time interval is 24.17 rad.
Answer:
R1 = 5.13 Ω
Explanation:
From Ohm's law,
V = IR............... Equation 1
Where V = Voltage, I = current, R = resistance.
From the question,
I = 2 A, R = R1
Substitute into equation 1
V = 2R1................ Equation 2
When a resistance of 2.2Ω is added in series with R1,
assuming the voltage source remain constant
R = 2.2+R1, and I = 1.4 A
V = 1.4(2.2+R1)................. Equation 3
Substitute the value of V into equation 3
2R1 = 1.4(2.2+R1)
2R1 = 3.08+1.4R1
2R1-1.4R1 = 3.08
0.6R1 = 3.08
R1 = 3.08/0.6
R1 = 5.13 Ω
Given data
*The given mass of the pendulum is m = 3 kg
*The given height is h = 0.3 m
The formula for the maximum speed of the pendulum is given as
![v_{\max }=\sqrt[]{2gh}](https://tex.z-dn.net/?f=v_%7B%5Cmax%20%7D%3D%5Csqrt%5B%5D%7B2gh%7D)
*Here g is the acceleration due to the gravity
Substitute the values in the above expression as
![\begin{gathered} v_{\max }=\sqrt[]{2\times9.8\times0.3} \\ =2.42\text{ m/s} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20v_%7B%5Cmax%20%7D%3D%5Csqrt%5B%5D%7B2%5Ctimes9.8%5Ctimes0.3%7D%20%5C%5C%20%3D2.42%5Ctext%7B%20m%2Fs%7D%20%5Cend%7Bgathered%7D)
Hence, the maximum speed of the pendulum is 2.42 m/s
If you move a magnet through a loop of wire, induction will happen. The more loops you make, the stronger the effect becomes.