I know i did part a correctly. heres what i did: momentum is conserved: m1 * u - m2 * u = m2 * v or (m1 - m2) * u = m2 * v Also, for an elastic head-on collision, we know that the relative velocity of approach = relative velocity of separation (from conservation of energy), or, for this problem, 2u = v Then (m1 - m2) * u = m2 * 2u m1 - m2 = 2 * m2 m1 = 3 * m2 m1 is the sphere that remained at rest (hence its absence from the RHS), so m2 = 0.3kg / 3 m2 = 0.1 kg b) this part confuses me, heres what i did (m1 - m2) * u = m2 * v (.3kg - .1kg)(2.0m/s) = .1kg * v .4 kg = .1 v v = 4 m/s What my teacher did: (.3g - .1g) * 2.0m/s = (.3g + .1g) * v I understand the left hand side but i dont get the right hand side. Why is m1 added to m2 when m1 is at rest which makes its v = zero?? v = +1.00m/s since the answer is positive, what does that mean? Also, if v was -1.00m/s what would that mean? thanks!
<span>Reference https://www.physicsforums.com/threads/elastic-collision-with-conservation-of-momentum-problem.651261...</span>
True because well it’s moving fast lol sometimes ur eyes have a hard time following its speed
2.4 meters per second
I hope this helps
To solve the problem it is necessary to apply the concepts related to Kepler's third law as well as the calculation of distances in orbits with eccentricities.
Kepler's third law tells us that

Where
T= Period
G= Gravitational constant
M = Mass of the sun
a= The semimajor axis of the comet's orbit
The period in years would be given by

PART A) Replacing the values to find a, we have




Therefore the semimajor axis is 
PART B) If the semi-major axis a and the eccentricity e of an orbit are known, then the periapsis and apoapsis distances can be calculated by



Answer:
H = 1/2 g t^2 time to reach top of trajectory
v = g t time to reach top of trajectory when v is initial speed upwards
v = 5 g = 49 m/s 5 sec upwards and 5 sec downwards