Answer:
R = ρ L / A where R is the resistance and ρ the resistivity:
R2 / R1 = (L2 / A2) / (L1 / A1) = L2 * A1 / (L1 * A2)
R2 / R1 = (2 L * A) / (L * 2 A) = 1
Their resistances should be the same.
Answer:
-39.2m/s
Explanation:
Given that :
t = 4secs
g = -9.8m/s^2
v = ?
u = 0m/s ( since it was at rest )
V = u +at............. 1
Where v is the final velocity
a = -g = -9.8m/s^2 since the ball was dropped from a height which will eventually make it move against gravity
t = 4secs
Substitute the values into 1
v = 0 - 9.8×4
v = -39.2m/s
Answer:

Explanation:
Given that
Length= 2L
Linear charge density=λ
Distance= d
K=1/(4πε)
The electric field at point P



So

Now by integrating above equation

Answer:
Explanation:
For an electric force, F the formula:
F = kQq/r^2
Given:
r2 = 1/2 × r1
F1 × r1 = k
F1 × r1 = F2 × r2
F2 = (F1 × r1^2)/(0.5 × r1)^2
= (F1 × r1^2)/0.25r1^2
= 4 × F1.