The only safe conclusion is that point G lies on line FH or that point G lies somewhere between line FH. We cannot conclude that point G is the midpoint of line FH eventhough by virtue of definition of midpoint, the given equation is a proof equation. If G were to be midpoint, segment FG must be equal to segment GH in line FH.
Answer:
<em>The speed of sound at 20°C is 343.42 m/s.</em>
<em>You have to wait 1.75 seconds to hear the sound of the bat hitting the ball</em>
Step-by-step explanation:
<u>Speed of Sound</u>
The speed of sound is not constant with temperature. Generally speaking, the greater the temperature, the greater the speed of sound.
The approximate speed of sound in dry air at temperatures T near 0°C is calculated from:

The air is at T=20°C, thus the speed of sound is:


The speed of sound at 20°C is 343.42 m/s.
To calculate the time to hear the sound after the batter hits the ball, we use the formula of constant speed motion:

Where d is the distance and t is the time. Solving for t:

Substituting the values v=343.42 m/s and d=600 m:

t = 1.75 s
You have to wait 1.75 seconds to hear the sound of the bat hitting the ball
2.8a^2=55
a^2=55/2.8
a= square root of 55/2.8
Answer:
- 3/8 in/ft
- 1/32 . . . (pure number, no units)
Step-by-step explanation:
The ratio can be expressed directly as ...
... (6 in)/(16 ft) = 3/8 in/ft
This can be read or used in different ways:
Or, the units can be made compatible and the ratio expressed as a pure number.
... (1/2 ft)/(16 ft) = (1/32) ft/ft = 1/32
This means whatever measurement is made on the model, the actual vehicle measurement is 32 times that.
Answer:
y=1/4x-4
Step-by-step explanation:
slope is 1/4 and the y intercept is -4