Answer is: 13181,7 kJ of energy <span>is released when 10.5 moles of acetylene is burned.
</span>Balanced chemical reaction: C₂H₂ + 5/2O₂ → 2CO₂ + H₂O.
<span>ΔHrxn = sum of
ΔHf (products of reaction) - sum of ΔHf (reactants).</span><span>
Or ΔHrxn = ∑ΔHf (products of reaction)
- ∑ΔHf (reactants).
ΔHrxn - enthalpy change of chemical reaction.
<span>ΔHf - enthalpy of formation of reactants or
products.
</span></span>ΔHrxn = (2·(-393,5) + (-241,8)) - 226,6 · kJ/mol.
ΔHrxn = -1255,4 kJ/mol.
Make proportion: 1 mol (C₂H₂) : -1255,4 kJ = 10,5 mol(C₂H₂) : Q.
Q = 13181,7 kJ.
This<span> will require'' </span>266.9kJ''<span> of heat energy
</span>
To calculate the energy required to raise the temperature of any given substance, here's what you require:
The mass of the material, <span>m</span>
Answer:
The average kinetic energy of a particle is proportional to the temperature in Kelvin.
Explanation:
The kinetic molecular theory states that particles of matter are in constant motion and collide frequently with each other as well as with the walls of the container.
The collisions between particles are completely elastic. The kinetic energy of the particles of a body depends on the temperature of the body since temperature is defined as a measure of the average kinetic energy of the particles of a body.
Therefore, the average kinetic energy of a particle is proportional to the temperature in Kelvin.
Ionization energy is the energy required to remove the
outermost electron from one mole of gaseous atom to produce 1 mole of gaseous
in to produce a charge of 1. The greater the ionization energy, the greater is
the chance f the electron to be removed from the nucleus. In this casse, Radium
has the largest ionization energy.
The volume is 2.23 liters of hydrogen gas.
<u>Explanation</u>:
moles of C = grams / molecular mass of C
= 1.04 g / 12.011 g/mol.
= 0.086
The ratio between C and H2 is 1 : 1
moles H2 = 0.086
V = nRT / p
= 0.086 x 0.08206 x 316 K / 1.0 atm
V = 2.23 L.