Energy is stored in chemical bonds during photosynthesis.
During photosynthesis, the radiant energy from the sun is converted to chemical energy in carbohydrates.
Inorganic materials in the form of carbon dioxide and oxygen combine to form carbohydrates in the presence of radiant energy according to the equation below:

The energy is thus, stored in chemical bonds in the carbohydrate and this is what is oxidized during respiration to release the locked energy.
More on photosynthesis can be found here: brainly.com/question/1388366
Answer:
Carbohydrates
Explanation:
Increased exercise intensity means the overall need for energy increases. As we increase exercise intensity we increase our glucose uptake and oxidation which far exceeds uptake, indicating that muscle stores of glycogen are being used. At moderate intensities (65%) there is an increased need for muscle glycogen and muscle triglycerides which is fat. At higher levels of intensities (85%) there is an even greater need for energy, and this is met almost solely by an increased uptake of glucose from the blood and from muscle glycogen.
In the case of fats as an energy fuel source at high intensities, increasing levels of intensity increases fat oxidation but once we get into higher levels of intensity, we return to levels of fat oxidation similar to very low intensities.
What class is this? (Subject)
Answer:
The chemical equilibrium of the system will be unaffected. The chemical equilibrium of the system will shift to the right to favor the forward reaction. The chemical equilibrium of the system will shift to the left to favor the reverse reaction. (I hope this helped!!)