Explanation:
Mass of fructose = 33.56 g
Mass of water = 18.88 g
Total mass of the solution = Mass of fructose + Mass of water = M
M = 33.56 g + 18.88 g =52.44 g
Volume of the solution = V = 40.00 mL
Density =
a) Density of the solution:
b) Molar mass of fructose = 180.16 g/mol
Moles of fructose =
Molar mass of water = 18.02 g/mol
Moles of water=
Mole fraction of fructose in this solution:
Mole fraction of water =
c) Average molar mass of of the solution:
=
d) Mass of 1 mole of solution = 42.50 g/mol
Density of the solution = 1.311 g/mL
d) Specific molar volume of the solution:
Answer: 94.13 L
Explanation: In STP in an ideal gas there is a standard value for both temperature and pressure. At STP,pressure is equal to 1atm and the temperature at 0°C is equal to 273.15K. This problem is an ideal gas so we use PV=nRT where R is a constant R= 0.08205 L.atm/mol.K.
To find volume, derive the equation, it becomes V=nRT/P. Substitute the values. V= 4.20 mol( 0.08205L.atm/mol.K)(273.15K) / 1 atm = 94.13 L. The mole units, atm and K will be cancelled out and L will be the remaining unit which is for volume.
Answer:
I think the answer is C but you might need a second opinion on this answer
Answer:
13.5 g
Explanation:
This question is solved easily if we remember that the number of moles is obtained by dividing the mass into the atomic weight or molar mass depending if we are referring to elements or molecules.
Therefore, the mass of aluminum in the reaction will the 0.050 mol Al times the atomic weight of aluminum.
number of moles = n = mass of Al / Atomic Weight Al
⇒ mass Al = n x Atomic Weight Al = 0.050 mol x 27 g mol⁻¹
= 13.5 g
We have three significant figures in 0.050 and therefore we should have three significant figures in our answer.
Answer-The correct option is option d with says all of the above.
Explanation- All three acids that are given combined together to form acid rain in which nitric and sulphuric acid are stronger acids present while carbonic acid is a weaker one.
The carbon dioxide admitted in air combines with water to form carbonic acid and gives a weak acidic nature to rainwater. Pollution in nature makes sulphur and nitrogen present in air react to form the stronger acids responsible for acid rain.