Answer:
When we cook food in the kitchen, that's the region of higher concentration of the smell. By diffusion, the smell spreads to the whole room and thereby whole house, so anyone standing at a distance, can smell it.
Answer: CoBr3 < K2SO4 < NH4 Cl
Justification:
1) The depression of the freezing point of a solution is a colligative property, which means that it depends on the number of particles of solute dissolved.
2) The formula for the depression of freezing point is:
ΔTf = i * Kf * m
Where i is the van't Hoof factor which accounts for the dissociation of the solute.
Kf is the freezing molal constant and only depends on the solvent
m is the molality (molal concentration).
3) Since, you are assuming equal concentrations and complete dissociation of the given solutes, the solute with more ions in the molecular formula will result in the solution with higher depression of the freezing point (lower freezing point).
4) These are the dissociations of the given solutes:
a) NH4 Cl (s) --> NH4(+)(aq) + Cl(-) (aq) => 1 mol --> 2 moles
b) Co Br3 (s) --> Co(3+) (aq) + 3Br(-)(aq) => 1 mol --> 4 moles
c) K2SO4 (s) --> 2K(+) (aq) + SO4 (2-) (aq) => 1 mol --> 3 moles
5) So, the rank of solutions by their freezing points is:
CoBr3 < K2SO4 < NH4 Cl
The correct answer is option B. Dirty water is a mixture of solid particles and liquid. It is both a mixture and pure substance.
The dirty water sample has both gravel and liquid water in it. After filtration the gravel is removed so the water sample looks clearer than before filtration. Liquid water is a pure substance because it is a compound that is made up of elements hydrogen and oxygen. Now the gravel is only physically combined with the liquid water, thus giving the water sample properties of a mixture. And like any mixture, gravel is physically separated through filtration from the liquid water.
Thus the water sample of the chemists is both a mixture and pure substance.
Answer:
Volume of stock solution needed = 6.0299 mL
Explanation:
<u>
</u>Dilution consists of lowering the amount of solute per unit volume of solution. It is achieved by adding more diluent to the same amount of solute.
This is deduced when thinking that both the dissolution at the beginning and at the end will have the same amount of moles.
<u>Data:</u>
M1 = 6.01 M stock solution concentration
M2 = 0.3624 M diluted solution concentration
V2 =100 mL diluted solution volume
V1 = ? stock solution volume
M1 * V1 = M2 * V2
