We'll represent the distance as d and the time as t.
d= 3(t+7) because Gilda is 7 minutes late when travelling 3 mph
d= 4(t-5) because Gilda is 5 minutes early at 4 mph
d= 3t + 21
d= 4t -20
3t +21 =4t -20
41=t
d= 3(41) +21= 144
The distance is 144 miles.
Answer:
0.18 ; 0.1875 ; No
Step-by-step explanation:
Let:
Person making the order = P
Other person = O
Gift wrapping = w
P(p) = 0.7 ; P(O) = 0.3 ; p(w|O) = 0.60 ; P(w|P) = 0.10
What is the probability that a randomly selected order will be a gift wrapped and sent to a person other than the person making the order?
Using the relation :
P(W|O) = P(WnO) / P(O)
P(WnO) = P(W|O) * P(O)
P(WnO) = 0.60 * 0.3 = 0.18
b. What is the probability that a randomly selected order will be gift wrapped?
P(W) = P(W|O) * P(O) + P(W|P) * P(P)
P(W) = (0.60 * 0.3) + (0.1 * 0.7)
P(W) = 0.18 + 0.07
P(W) = 0.1875
c. Is gift wrapping independent of the destination of the gifts? Justify your response statistically
No.
For independent events the occurrence of A does not impact the occurrence if the other.
![\sf{14(\sqrt[3]{x}) }](https://tex.z-dn.net/?f=%5Csf%7B14%28%5Csqrt%5B3%5D%7Bx%7D%29%20%7D)
Step-by-step explanation:
![5(\sqrt[3]{x})+9(\sqrt[3]{x})\\\\(5+9)(\sqrt[3]{x})\\\\14(\sqrt[3]{x})](https://tex.z-dn.net/?f=5%28%5Csqrt%5B3%5D%7Bx%7D%29%2B9%28%5Csqrt%5B3%5D%7Bx%7D%29%5C%5C%5C%5C%285%2B9%29%28%5Csqrt%5B3%5D%7Bx%7D%29%5C%5C%5C%5C14%28%5Csqrt%5B3%5D%7Bx%7D%29)