1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xxMikexx [17]
4 years ago
14

Need this done asap someone please help!!! @taskmasters

Mathematics
2 answers:
andrezito [222]4 years ago
7 0
The answe is b because the graph starts with the y axis on 2 and ends with the z axis at 8
DerKrebs [107]4 years ago
3 0

∴∴∴Answer:∴∴

<h2><u><em>≡≡≡B≡≡≡</em></u></h2><h2><u><em>.................</em></u></h2>

You might be interested in
On a single set of axes, sketch a picture of the graphs of the following four equations: y = −x+ √ 2, y = −x− √ 2, y = x+ √ 2, a
Artist 52 [7]

Answer:

( 1/√ 2 , 1/√ 2 ) , ( 1/√ 2 , - 1/√ 2 ),  ( -1/√ 2 , 1/√ 2 ) , ( -1/√ 2 , - 1/√ 2 )  

y + 1 = - ( x + 2 ) + √ 2 , y + 1 = - ( x + 2 ) - √ 2 ,  y + 1 = ( x + 2 ) - √ 2

             y + 1 = ( x + 2 ) + √ 2  ,   ( x + 2 )^2 + ( y + 1)^2 = 1

Step-by-step explanation:

Given:

- Four functions to construct a diamond:

                y = −x+ √ 2,  y = −x− √ 2,  y = x+ √ 2, and y = x − √ 2.

Find:

a)Show that the unit circle sits inside this diamond tangentially; i.e. show that the unit circle intersects each of the four lines exactly once.

b)Find the intersection points between the unit circle and each of the four lines.

(c) Construct a diamond shaped region in which the circle of radius 1 centered at (−2, − 1) sits tangentially. Use the techniques of this section to help.

Solution:

- For first part see the attachment.

- The equation of the unit circle is given as follows:

                                      x^2 + y^2 = 1

- To determine points of intersection we have to solve each given function of y with unit circle equation for set of points of intersection:

                                For:  y = −x+ √ 2 , x - √ 2

                                And: x^2 + y^2 = 1

                                x^2 + (+/- * (x - √ 2))^2 = 1

                                x^2 + (x - √ 2)^2 = 1

                                2x^2 -2√ 2*x + 2 = 1

                                2x^2 -2√ 2*x + 1 = 0

                                 2[ x^2 - √ 2] + 1 = 0

Complete sqr:         (1 - 1/√ 2)^2 = 0

                                 x = 1/√ 2 , x = 1/√ 2                                          

                                 y = -1/√ 2 + √ 2 = 1/√ 2

                                 y = 1/√ 2 - √ 2 = - 1/√ 2

Points are:                ( 1/√ 2 , 1/√ 2 ) , ( 1/√ 2 , - 1/√ 2 )

- Using vertical symmetry of unit circle we can also evaluate other intersection points by intuition:

                                x = - 1/√ 2

                                 y = 1/√ 2 , -1/√ 2

Points are:              ( -1/√ 2 , 1/√ 2 ) , ( -1/√ 2 , - 1/√ 2 )  

- To determine the function for the rhombus region that would be tangential to unit circle with center at ( - 2 , - 1 ):

- To shift our unit circle from origin to ( - 2 , - 1 ) i.e two units left and 1 unit down.

- For shifts we use the following substitutions:

                           x = x + 2  ....... 2 units of left shift

                           y = y + 1 .......... 1 unit of down shift

- Now substitute the above shifting expression in all for functions we have:

                          y = −x+ √ 2 ----->  y + 1 = - ( x + 2 ) + √ 2

                          y = −x− √ 2 ----->  y + 1 = - ( x + 2 ) - √ 2

                          y = x- √ 2 ------->  y + 1 = ( x + 2 ) - √ 2

                          y = x+ √ 2 ------> y + 1 = ( x + 2 ) + √ 2

                          x^2 + y^2 = 1 ----->  ( x + 2 )^2 + ( y + 1)^2 = 1

- The following diamond shape graph would have the 4 functions as:

             y + 1 = - ( x + 2 ) + √ 2 , y + 1 = - ( x + 2 ) - √ 2 ,  y + 1 = ( x + 2 ) - √ 2

             y + 1 = ( x + 2 ) + √ 2  ,   ( x + 2 )^2 + ( y + 1)^2 = 1

- See attachment for the new sketch.            

7 0
4 years ago
19.7÷3 what's the estimate quotient
natima [27]
Originally, you would get 6.56666 repeating as your answer.  When you end up rounding, or estimating it, it then becomes just simply 7.
5 0
3 years ago
Read 2 more answers
The high school students who attend Springfield Women's Academy are eligible to tryout for various teams within the athletic dep
BartSMP [9]

Answer:

Event A' = Freshman or Junior

Step-by-step explanation:

7 0
3 years ago
What is the distance between the two points shown?
bonufazy [111]
The distance is (-4, 4)

Explanation: I moved down 4 cubes (negative) and moved right 4 cubes (positive).

I hope I am right :)
7 0
3 years ago
Read 2 more answers
What is the answer for 3/5 (5/3)
Pavel [41]

Answer:

1

1 because It's a whole question and when divided u get one

7 0
3 years ago
Other questions:
  • Just 2 questions, thanks if you help!!
    8·2 answers
  • 5-9 sorry trying to do ELA math is kinda difficult this quarter
    14·1 answer
  • Help me on 12 and 13 please
    5·1 answer
  • In triangle ABC, the length of side AB is 13 inches and the length of side BC is 19 inches. Which of the following could be the
    7·1 answer
  • Determine where f(x) is discontinuous. Justify your answer.<br> f(x)=x^2+x-2/x-1
    7·1 answer
  • 1. What is the value of the expression 363*)?<br> d. 27<br> a.10<br> c. 19<br> b. 15
    9·1 answer
  • If LADC measures 61°, what does ZABC measure?<br> А<br> С<br> B<br> D
    13·1 answer
  • Jordan mixed together 9 gal. of Brand A fruit drink and 8 gal. of Brand B fruit drink which contains 48% fruit juice. Find the j
    7·1 answer
  • 25. Which word does NOT describe the set of points? (1,5) (2, 2) (3, -1) (4,-4) (5, -7) (6,-10) Decreasing Function Increasing L
    6·1 answer
  • HELP:. In baseball, the distance from the pitcher's mound to the batter is 60.5 feet. A pitcher can throw the baseball at 121 fe
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!