1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ELEN [110]
3 years ago
15

On a single set of axes, sketch a picture of the graphs of the following four equations: y = −x+ √ 2, y = −x− √ 2, y = x+ √ 2, a

nd y = x − √ 2. These equations determine lines, which in turn bound a diamond shaped region in the plane.
(a) Show that the unit circle sits inside this diamond tangentially; i.e. show that the unit circle intersects each of the four lines exactly once.

(b) Find the intersection points between the unit circle and each of the four lines.

(c) Construct a diamond shaped region in which the circle of radius 1 centered at (−2, − 1) sits tangentially. Use the techniques of this section to help.

Mathematics
1 answer:
Artist 52 [7]3 years ago
7 0

Answer:

( 1/√ 2 , 1/√ 2 ) , ( 1/√ 2 , - 1/√ 2 ),  ( -1/√ 2 , 1/√ 2 ) , ( -1/√ 2 , - 1/√ 2 )  

y + 1 = - ( x + 2 ) + √ 2 , y + 1 = - ( x + 2 ) - √ 2 ,  y + 1 = ( x + 2 ) - √ 2

             y + 1 = ( x + 2 ) + √ 2  ,   ( x + 2 )^2 + ( y + 1)^2 = 1

Step-by-step explanation:

Given:

- Four functions to construct a diamond:

                y = −x+ √ 2,  y = −x− √ 2,  y = x+ √ 2, and y = x − √ 2.

Find:

a)Show that the unit circle sits inside this diamond tangentially; i.e. show that the unit circle intersects each of the four lines exactly once.

b)Find the intersection points between the unit circle and each of the four lines.

(c) Construct a diamond shaped region in which the circle of radius 1 centered at (−2, − 1) sits tangentially. Use the techniques of this section to help.

Solution:

- For first part see the attachment.

- The equation of the unit circle is given as follows:

                                      x^2 + y^2 = 1

- To determine points of intersection we have to solve each given function of y with unit circle equation for set of points of intersection:

                                For:  y = −x+ √ 2 , x - √ 2

                                And: x^2 + y^2 = 1

                                x^2 + (+/- * (x - √ 2))^2 = 1

                                x^2 + (x - √ 2)^2 = 1

                                2x^2 -2√ 2*x + 2 = 1

                                2x^2 -2√ 2*x + 1 = 0

                                 2[ x^2 - √ 2] + 1 = 0

Complete sqr:         (1 - 1/√ 2)^2 = 0

                                 x = 1/√ 2 , x = 1/√ 2                                          

                                 y = -1/√ 2 + √ 2 = 1/√ 2

                                 y = 1/√ 2 - √ 2 = - 1/√ 2

Points are:                ( 1/√ 2 , 1/√ 2 ) , ( 1/√ 2 , - 1/√ 2 )

- Using vertical symmetry of unit circle we can also evaluate other intersection points by intuition:

                                x = - 1/√ 2

                                 y = 1/√ 2 , -1/√ 2

Points are:              ( -1/√ 2 , 1/√ 2 ) , ( -1/√ 2 , - 1/√ 2 )  

- To determine the function for the rhombus region that would be tangential to unit circle with center at ( - 2 , - 1 ):

- To shift our unit circle from origin to ( - 2 , - 1 ) i.e two units left and 1 unit down.

- For shifts we use the following substitutions:

                           x = x + 2  ....... 2 units of left shift

                           y = y + 1 .......... 1 unit of down shift

- Now substitute the above shifting expression in all for functions we have:

                          y = −x+ √ 2 ----->  y + 1 = - ( x + 2 ) + √ 2

                          y = −x− √ 2 ----->  y + 1 = - ( x + 2 ) - √ 2

                          y = x- √ 2 ------->  y + 1 = ( x + 2 ) - √ 2

                          y = x+ √ 2 ------> y + 1 = ( x + 2 ) + √ 2

                          x^2 + y^2 = 1 ----->  ( x + 2 )^2 + ( y + 1)^2 = 1

- The following diamond shape graph would have the 4 functions as:

             y + 1 = - ( x + 2 ) + √ 2 , y + 1 = - ( x + 2 ) - √ 2 ,  y + 1 = ( x + 2 ) - √ 2

             y + 1 = ( x + 2 ) + √ 2  ,   ( x + 2 )^2 + ( y + 1)^2 = 1

- See attachment for the new sketch.            

You might be interested in
-5,-6,0,6 which pair of numbers has a sum of zero
ladessa [460]

Answer:

-6, 6

Step-by-step explanation:

I hope this helps :)

7 0
3 years ago
What is the surface area?<br> 10 cm<br> 8 cm<br> 10 cm<br> 12 cm<br> 10 cm<br> square centimeters
Alinara [238K]

Step-by-step explanation:

surface area = (2*0.5*12*8) + (2*10*10) + (12*10)

= 96 + 200 + 120

= 416 cm^2

6 0
3 years ago
What is the median of the following numbers? 10,6,4,4,6,4,1
saveliy_v [14]

Answer:

4

Step-by-step explanation:

If you set the numbers in order from least to greatest, you will find that 4 is the middle value(median)

7 0
2 years ago
Read 2 more answers
Simplify the expression. Write your answer as a power.
kolbaska11 [484]
(-3/4)^10 please mark as brainiest :)
4 0
2 years ago
Each day the 29 people in Ms.Gills band class play music for 34 minutes.what would be the best estimate for the amount of music
poizon [28]

234 bc you they play 34 mins in one day and just times 34 by 7 and it will get ur answer.

6 0
2 years ago
Read 2 more answers
Other questions:
  • Urgent mathematics help needed!! URGENT
    8·1 answer
  • BRAINLEST?! ☺️ What are the features of the quadratic function graphed in the figure?
    10·1 answer
  • Can u help me ok the first one plz
    5·1 answer
  • If 14 out of 24 students in a college class are men,then,to the nearest tenth of a percent,what percent of the classics composed
    6·2 answers
  • Help with problem<br> 2·m+3·m²-4·m
    12·2 answers
  • What is the greatest common factor of: 12 &amp; 20
    8·2 answers
  • Manu picked 10 apples, and then Sten gave him 10 more. Manu gave 5 of the apples to Klara. How many
    7·2 answers
  • What is The 10th prime number
    6·2 answers
  • 12. A grocery store collects donated canned
    7·1 answer
  • Please please help me
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!