1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ELEN [110]
3 years ago
15

On a single set of axes, sketch a picture of the graphs of the following four equations: y = −x+ √ 2, y = −x− √ 2, y = x+ √ 2, a

nd y = x − √ 2. These equations determine lines, which in turn bound a diamond shaped region in the plane.
(a) Show that the unit circle sits inside this diamond tangentially; i.e. show that the unit circle intersects each of the four lines exactly once.

(b) Find the intersection points between the unit circle and each of the four lines.

(c) Construct a diamond shaped region in which the circle of radius 1 centered at (−2, − 1) sits tangentially. Use the techniques of this section to help.

Mathematics
1 answer:
Artist 52 [7]3 years ago
7 0

Answer:

( 1/√ 2 , 1/√ 2 ) , ( 1/√ 2 , - 1/√ 2 ),  ( -1/√ 2 , 1/√ 2 ) , ( -1/√ 2 , - 1/√ 2 )  

y + 1 = - ( x + 2 ) + √ 2 , y + 1 = - ( x + 2 ) - √ 2 ,  y + 1 = ( x + 2 ) - √ 2

             y + 1 = ( x + 2 ) + √ 2  ,   ( x + 2 )^2 + ( y + 1)^2 = 1

Step-by-step explanation:

Given:

- Four functions to construct a diamond:

                y = −x+ √ 2,  y = −x− √ 2,  y = x+ √ 2, and y = x − √ 2.

Find:

a)Show that the unit circle sits inside this diamond tangentially; i.e. show that the unit circle intersects each of the four lines exactly once.

b)Find the intersection points between the unit circle and each of the four lines.

(c) Construct a diamond shaped region in which the circle of radius 1 centered at (−2, − 1) sits tangentially. Use the techniques of this section to help.

Solution:

- For first part see the attachment.

- The equation of the unit circle is given as follows:

                                      x^2 + y^2 = 1

- To determine points of intersection we have to solve each given function of y with unit circle equation for set of points of intersection:

                                For:  y = −x+ √ 2 , x - √ 2

                                And: x^2 + y^2 = 1

                                x^2 + (+/- * (x - √ 2))^2 = 1

                                x^2 + (x - √ 2)^2 = 1

                                2x^2 -2√ 2*x + 2 = 1

                                2x^2 -2√ 2*x + 1 = 0

                                 2[ x^2 - √ 2] + 1 = 0

Complete sqr:         (1 - 1/√ 2)^2 = 0

                                 x = 1/√ 2 , x = 1/√ 2                                          

                                 y = -1/√ 2 + √ 2 = 1/√ 2

                                 y = 1/√ 2 - √ 2 = - 1/√ 2

Points are:                ( 1/√ 2 , 1/√ 2 ) , ( 1/√ 2 , - 1/√ 2 )

- Using vertical symmetry of unit circle we can also evaluate other intersection points by intuition:

                                x = - 1/√ 2

                                 y = 1/√ 2 , -1/√ 2

Points are:              ( -1/√ 2 , 1/√ 2 ) , ( -1/√ 2 , - 1/√ 2 )  

- To determine the function for the rhombus region that would be tangential to unit circle with center at ( - 2 , - 1 ):

- To shift our unit circle from origin to ( - 2 , - 1 ) i.e two units left and 1 unit down.

- For shifts we use the following substitutions:

                           x = x + 2  ....... 2 units of left shift

                           y = y + 1 .......... 1 unit of down shift

- Now substitute the above shifting expression in all for functions we have:

                          y = −x+ √ 2 ----->  y + 1 = - ( x + 2 ) + √ 2

                          y = −x− √ 2 ----->  y + 1 = - ( x + 2 ) - √ 2

                          y = x- √ 2 ------->  y + 1 = ( x + 2 ) - √ 2

                          y = x+ √ 2 ------> y + 1 = ( x + 2 ) + √ 2

                          x^2 + y^2 = 1 ----->  ( x + 2 )^2 + ( y + 1)^2 = 1

- The following diamond shape graph would have the 4 functions as:

             y + 1 = - ( x + 2 ) + √ 2 , y + 1 = - ( x + 2 ) - √ 2 ,  y + 1 = ( x + 2 ) - √ 2

             y + 1 = ( x + 2 ) + √ 2  ,   ( x + 2 )^2 + ( y + 1)^2 = 1

- See attachment for the new sketch.            

You might be interested in
A line that passes through the points (−5, 7) (10, 1). Using the mx+b format
lianna [129]

Answer:

y=2x-19

Step-by-step explanation:

I'm guessing you mean slope intercept form y=mx+b

If so, first you would have to find the slope of the line

To do that, use the formula y2-y1/x2-x1

Remember you can pick any coordinate pair for this

I will pick 1=y2 -5=y1 10=x2 and 7=x1

When I put that in the equation I get 1-(-5)/10-7

Overall I get 6/3, or 2

Now to find the y intercept, you plug in the slope and one of the coordinates(any is fine)

I will pick (10,1)

1=y and 10=x and 2=m

1=2(10)+b

this simplifies to 1=20+b

now subtract 20 from both sides and get -19 = b

Now you have your equation y=2x-19

6 0
3 years ago
Read 2 more answers
Use the formula to help you answer the question below. do not include units in your answer.
bogdanovich [222]
The information given requires you to rework the formula as :
distance÷time=rate

so then plug in values to get
5÷2=rate

and the answer will be 2.5 as your rate
7 0
3 years ago
12 ÷ 4 + (3 − 2) × 7
Andre45 [30]

Answer: step-by-step

Step-by-step explanation:

answer: 10

to solve you have to follow PEMDAS

3 0
2 years ago
Are any of the figures B, C, or D scaled coples of figure A? Explain how you know.
belka [17]

Answer:

C

Step-by-step explanation:

C is the only one that is an enlarged version of A.

3 0
3 years ago
A town with a population of 5,000 grows 3% per year. Find the population at the end of<br> 10 years.
TEA [102]

Answer:

6,500

Step-by-step explanation:

5000x.03=150

150=3%

150x10=1500

1,500+5,000= 6,500

5 0
2 years ago
Other questions:
  • Charley Davis is 1/4 as old as his father. The sum of their ages is 45. How old is each person?
    13·1 answer
  • HELLLPPPPPP PLLEEEEEAAAASSSEEEE!!!!!!!!!!!!
    13·1 answer
  • Dylan has a square peice of metal that measures 10inches on each side he cuts the metal along the diagonal, forming two right tr
    8·1 answer
  • Ravi can type 6 words in 4 seconds. how many words can she type in 10 seconds.
    7·1 answer
  • Can someone please find the inverse and explain step by step
    9·2 answers
  • HELP ME PLS I DONT HAVE TIME
    6·1 answer
  • 20 is what present of 30?
    13·1 answer
  • Mr. Evans will deliver a total of 168 cases of soda to 7 different grocery stores today.
    6·2 answers
  • SOLVE THIS PROBLEM ASAP
    8·1 answer
  • Expand and simplify bracket please quickly
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!