1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ELEN [110]
3 years ago
15

On a single set of axes, sketch a picture of the graphs of the following four equations: y = −x+ √ 2, y = −x− √ 2, y = x+ √ 2, a

nd y = x − √ 2. These equations determine lines, which in turn bound a diamond shaped region in the plane.
(a) Show that the unit circle sits inside this diamond tangentially; i.e. show that the unit circle intersects each of the four lines exactly once.

(b) Find the intersection points between the unit circle and each of the four lines.

(c) Construct a diamond shaped region in which the circle of radius 1 centered at (−2, − 1) sits tangentially. Use the techniques of this section to help.

Mathematics
1 answer:
Artist 52 [7]3 years ago
7 0

Answer:

( 1/√ 2 , 1/√ 2 ) , ( 1/√ 2 , - 1/√ 2 ),  ( -1/√ 2 , 1/√ 2 ) , ( -1/√ 2 , - 1/√ 2 )  

y + 1 = - ( x + 2 ) + √ 2 , y + 1 = - ( x + 2 ) - √ 2 ,  y + 1 = ( x + 2 ) - √ 2

             y + 1 = ( x + 2 ) + √ 2  ,   ( x + 2 )^2 + ( y + 1)^2 = 1

Step-by-step explanation:

Given:

- Four functions to construct a diamond:

                y = −x+ √ 2,  y = −x− √ 2,  y = x+ √ 2, and y = x − √ 2.

Find:

a)Show that the unit circle sits inside this diamond tangentially; i.e. show that the unit circle intersects each of the four lines exactly once.

b)Find the intersection points between the unit circle and each of the four lines.

(c) Construct a diamond shaped region in which the circle of radius 1 centered at (−2, − 1) sits tangentially. Use the techniques of this section to help.

Solution:

- For first part see the attachment.

- The equation of the unit circle is given as follows:

                                      x^2 + y^2 = 1

- To determine points of intersection we have to solve each given function of y with unit circle equation for set of points of intersection:

                                For:  y = −x+ √ 2 , x - √ 2

                                And: x^2 + y^2 = 1

                                x^2 + (+/- * (x - √ 2))^2 = 1

                                x^2 + (x - √ 2)^2 = 1

                                2x^2 -2√ 2*x + 2 = 1

                                2x^2 -2√ 2*x + 1 = 0

                                 2[ x^2 - √ 2] + 1 = 0

Complete sqr:         (1 - 1/√ 2)^2 = 0

                                 x = 1/√ 2 , x = 1/√ 2                                          

                                 y = -1/√ 2 + √ 2 = 1/√ 2

                                 y = 1/√ 2 - √ 2 = - 1/√ 2

Points are:                ( 1/√ 2 , 1/√ 2 ) , ( 1/√ 2 , - 1/√ 2 )

- Using vertical symmetry of unit circle we can also evaluate other intersection points by intuition:

                                x = - 1/√ 2

                                 y = 1/√ 2 , -1/√ 2

Points are:              ( -1/√ 2 , 1/√ 2 ) , ( -1/√ 2 , - 1/√ 2 )  

- To determine the function for the rhombus region that would be tangential to unit circle with center at ( - 2 , - 1 ):

- To shift our unit circle from origin to ( - 2 , - 1 ) i.e two units left and 1 unit down.

- For shifts we use the following substitutions:

                           x = x + 2  ....... 2 units of left shift

                           y = y + 1 .......... 1 unit of down shift

- Now substitute the above shifting expression in all for functions we have:

                          y = −x+ √ 2 ----->  y + 1 = - ( x + 2 ) + √ 2

                          y = −x− √ 2 ----->  y + 1 = - ( x + 2 ) - √ 2

                          y = x- √ 2 ------->  y + 1 = ( x + 2 ) - √ 2

                          y = x+ √ 2 ------> y + 1 = ( x + 2 ) + √ 2

                          x^2 + y^2 = 1 ----->  ( x + 2 )^2 + ( y + 1)^2 = 1

- The following diamond shape graph would have the 4 functions as:

             y + 1 = - ( x + 2 ) + √ 2 , y + 1 = - ( x + 2 ) - √ 2 ,  y + 1 = ( x + 2 ) - √ 2

             y + 1 = ( x + 2 ) + √ 2  ,   ( x + 2 )^2 + ( y + 1)^2 = 1

- See attachment for the new sketch.            

You might be interested in
HELP FAST I JUST NEED ANSWER
lukranit [14]

Answer:

449.60 or yellow

Step-by-step explanation:

5 0
3 years ago
Mark the number line to show 1/4. Label 0 and 1 on the number line
emmainna [20.7K]
0 -1/8 -1/4 -1/2 -1
5 0
3 years ago
prescription for marilyn jones piroxicam 20 mg capsule take 1 capsule 2 times a day how many milligrams mg will marilyn take of
fenix001 [56]

Answer:

\boxed{\text{3600 mg}}

Step-by-step explanation:

Step 1. Calculate the number of capsules

Marilyn takes 2 capsules per day

\text{No. of capsules} = \text{90 days} \times \dfrac{\text{2 capsules}}{\text{1 day}} = \text{ 180 capsules}

Step 2. Convert capsules to milligrams

There are 20 mg in each capsule.  

\text{No. of milligrams} = \text{180 capsules} \times \dfrac{\text{20 mg}}{\text{1 capsule}} = \textbf{3600 mg}\\\\\text{Marilyn will take } \boxed{\textbf{3600 mg}} \text{ of Pirixocam}

6 0
3 years ago
What's 9 + 10-4 + 78 ​
Zarrin [17]

Answer:

93

Step-by-step explanation:

78+9+(10-4)=

78+9+6=

93

3 0
3 years ago
Read 2 more answers
Does anyone know the answer if so please tell me ty!
Nezavi [6.7K]
The bottom 2 i’m pretty sure, sorrry if it’s wrong
5 0
3 years ago
Other questions:
  • A group of 5 painters can paint a house in 21 hours. How long would it take for a group of 7 painters to paint the same house?
    8·2 answers
  • Use ratio language to describe the relationship between 5 girls: 8 boys
    12·1 answer
  • Enter an algebraic equation for the word sentence. Use x as your variable.
    7·1 answer
  • What is the equation of the function that is graphed as line b?
    13·2 answers
  • The standard form of the equation that represents the number of quarters, q, and the number of dimes, d, that Austin has in his
    15·2 answers
  • I NEED HELP ASAP!!!!!!
    12·1 answer
  • A compact disc has an approximate Radius of 2 3/8 inches, what is the approximate area of a CD
    9·1 answer
  • What is the product?
    14·1 answer
  • Help meeeeeeeeeeeeeeeeeeeeee
    11·2 answers
  • PLEASE HELP!!! asappp i dont understand
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!