Answer:
a) The distance of the object from the center of the Earth is 8.92x10⁶ m.
b) The initial acceleration of the object is 5 m/s².
Explanation:
a) The distance can be found using the equation of gravitational force:

Where:
G: is the gravitational constant = 6.67x10⁻¹¹ Nm²/kg²
M: is the Earth's mass = 5.97x10²⁴ kg
m: is the object's mass = 0.4 kg
F: is the force or the weight = 2.0 N
r: is the distance =?
The distance is:
Hence, the distance of the object from the center of the Earth is 8.92x10⁶ m.
b) The initial acceleration of the object can be calculated knowing the weight:
Where:
W: is the weight = 2 N
a: is the initial acceleration =?

Therefore, the initial acceleration of the object is 5 m/s².
I hope it helps you!
(89000/102000)×100
=87.25%
(92000/104000)×100
=88.46%
efficiency is (output/input)×100
if u get confused which way input and output should go, remember the smaller value is always output and it's above in the fraction, then only it's possible to get a efficiency lower than 100.
Answer:
D. TA < TB
Explanation:
From general gas equation, we know that:
PV = nRT
PV/R = nT
where,
P = pressure of gas
V = volume of gas
R = General gas constant
T = temperature of gas
n = no. of moles of gas
<u>FOR CYLINDER A</u>:
PV/R = (nA)(TA) _____ eqn (1)
<u>FOR CYLINDER B</u>:
PV/R = (nB)(TB) _____ eqn (2)
Because, Pressure, Volume are constant for both cylinders.
Comparing eqn (1) and (2)
(nA)(TA) = (nB)(TB)
It is given that the amount of gas in cylinder A is twice as much as the gas in cylinder B. This means the number moles in cylinder A are twice as much as no. of moles in cylinder B.
nA = 2(nB)
using this in eqn:
2(nB)(TA) = (nB)(TB)
TA = (1/2)(TB)
<u>TA = 0.5 TB</u>
Therefore it is clear that the correct option is:
<u>D. TA<TB</u>
Answer:
1) ELECTRO MAGNET
2) B
3) -AMOUNT OF ELECTRICITY OF THE POWER SOURCE
- AMOUNT OF COIL WRAPPED UP TO THE NAIK
-CONDUCTIVITY OF THE MEDIUM