Answer:

Explanation:
The electrostatic potential energy for pair of charge is given by
U=1/4π∈₀×(q₁q₂/r)
Hence for a system of three charges the electrostatic potential energy can be found by adding up the potential energy for all possible pairs or charges.For three equal charges on the corners of an equilateral triangle,the electrostatic potential energy is given by:
U=1/4π∈₀×(q²/r)+1/4π∈₀×(q²/r)+1/4π∈₀×(q²/r)
U=3×1/4π∈₀×(q²/r)
Substitute given values
So
Answer:
The electric field strength is 
Explanation:
Given that,
Magnetic field = 0.150 T
Speed 
We need to calculate the electric field strength
Using formula of velocity


Where, v = speed
B = magnetic field
Put the value into the formula



Hence, The electric field strength is 
The electrical force acting on a charge q immersed in an electric field is equal to

where
q is the charge
E is the strength of the electric field
In our problem, the charge is q=2 C, and the force experienced by it is
F=60 N
so we can re-arrange the previous formula to find the intensity of the electric field at the point where the charge is located:
Answer:3.67 m/s
Explanation:
mass of block(m)=2 kg
Velocity of block=6 m/s
spring constant(k)=2 KN/m
Spring compression x=15 cm
Conserving Energy
energy lost by block =Gain in potential energy in spring

![2\left [ 6^2-v_2^2\right ]=2\times 10^3\times \left [ 0.15\right ]^2](https://tex.z-dn.net/?f=2%5Cleft%20%5B%206%5E2-v_2%5E2%5Cright%20%5D%3D2%5Ctimes%2010%5E3%5Ctimes%20%5Cleft%20%5B%200.15%5Cright%20%5D%5E2)
