<em>Answer</em>
0.6 teslas
<em>Explanation</em>
When a conductor is inside a magnetic field it experiences a force given by;
Force = ILBsinθ
Where I⇒ current
L ⇒length of the conductor
B ⇒ magnetic field strength
θ ⇒ Angle between the conductor and magnetic field.
F = ILBsinθ
When θ = 90°, Then sin 90 =1 and the formula becomes;
F =ILB
3 = 10 × 0.5 × B
3 = 5B
B = 3/5
= 0.6
magnetic field strength = 0.6 teslas
Answer:
R=100 Ohm, V=11.97 volts and I=0.12 amperes
R=10 Ohm, V=10.25 volts and I=1.20 amperes
R=2 Ohm, V=6.26 volts
Explanation:
The potential difference (voltage) of a battery with internal resistance is:
(1)
with
the electromotive force (the voltage the batteries say to has) , I the current and r the internal resistance. By Ohm's law the current that passes through the resistor is:
(2)
using (2) on (1):

solving for V:

(3)
R=100 Ohm

R=10 Ohm

R=2 Ohm

Because we have now the values of I on the circuit (is the same through all the components because is a series circuit)
We use back substitution on (1) to find the current:
R=100 Ohm

R=10 Ohm

Answer: The wavelength and frequency of light are closely related. The higher the frequency, the shorter the wavelength. Because all light waves move through a vacuum at the same speed, the number of wave crests passing by a given point in one second depends on the wavelength.
Explanation:
Answer:
neutrinos and seismic vibrations
Explanation:
0.9 is less than 1.0 by 0.1
so your answer is true
hope this helps