Setting reference frame so that the x axis is along the incline and y is perpendicular to the incline
<span>X: mgsin65 - F = mAx </span>
<span>Y: N - mgcos65 = 0 (N is the normal force on the incline) N = mgcos65 (which we knew) </span>
<span>Moment about center of mass: </span>
<span>Fr = Iα </span>
<span>Now Ax = rα </span>
<span>and F = umgcos65 </span>
<span>mgsin65 - umgcos65 = mrα -------------> gsin65 - ugcos65 = rα (this is the X equation m's cancel) </span>
<span>umgcos65(r) = 0.4mr^2(α) -----------> ugcos65(r) = 0.4r(rα) (This is the moment equation m's cancel) </span>
<span>ugcos65(r) = 0.4r(gsin65 - ugcos65) ( moment equation subbing in X equation for rα) </span>
<span>ugcos65 = 0.4(gsin65 - ugcos65) </span>
<span>1.4ugcos65 = 0.4gsin65 </span>
<span>1.4ucos65 = 0.4sin65 </span>
<span>u = 0.4sin65/1.4cos65 </span>
<span>u = 0.613 </span>
The greater the cross-sectional area of an object, the greater the amount of air resistance it encounters since it collides with more air molecules. ... It will have to accelerate for a longer period of time before there is enough upward air resistance to balance the downward force of gravity.
The molecules will heat up and move faster, some evaporating and turning to gas, the toy boat will heat up if made of conducting materials but otherwise unchanged. The water will also start to boil.
Answer:
because speed is the modulus of velocity which is a vector
the velocity to be zero it must be a round trip
Explanation:
This is because speed is the modulus of velocity which is a vector.
For the velocity to be zero it must be a round trip, therefore the resulting vector zero
On the other hand, the speed of the module is the same in both directions
Answer:
height is the answer i'm pretty sure.
Explanation: