Answer:
This question is asking to identify the following variables:
Independent variable (IV): TYPE OF SOIL
Dependent variable (DV): HEIGHT AND NUMBER OF LEAVES
Control group: None in this experiment
Constant: SAME ROSE PLANT, SAME TIME INTERVAL (1 WEEK)
Explanation:
Independent variable in an experiment is the variable that is manipulated or changed by the experimenter in order to effect a measurable outcome. In this case, the independent variable is the TYPE OF SOIL used.
Dependent variable is the measurable variable that responds to changes made to the independent variable. In this experiment, the dependent variable is the HEIGHT AND NUMBER OF LEAVES of each rose.
Constants or control variable is the variable that is kept unchanged or constant for all groups throughout the experiment. In this experiment, the constants are SAME ROSE PLANT, SAME TIME INTERVAL (1 WEEK).
Control group are the groups that does not receive the experimental treatment. In this case, all the groups received the experimental treatment (different soil types). Hence, there is no control
Answer: F = 102141N
Explanation: <em><u>Newton's 2nd Law</u></em> states that a force can change the motion of a body. The relation is given by
F = m.a
whose units are:
[F] = N
[m] = kg
[a] = m/s²
Jenny's car, at the moment of the break, had acceleration:


a = 78.57 m/s²
Then, Force is
F = 1300*78.57
F = 102141 N
<u>Jenny's car experienced a force of </u><u>magnitude 102141N.</u>
Answer:
Hello your question is incomplete below is the complete question
Calculate Earths velocity of approach toward the sun when earth in its orbit is at an extremum of the latus rectum through the sun, Take the eccentricity of Earth's orbit to be 1/60 and its Semimajor axis to be 93,000,000
answer : V = 1.624* 10^-5 m/s
Explanation:
First we have to calculate the value of a
a = 93 * 10^6 mile/m * 1609.344 m
= 149.668 * 10^8 m
next we will express the distance between the earth and the sun
--------- (1)
a = 149.668 * 10^8
E (eccentricity ) = ( 1/60 )^2
= 90°
input the given values into equation 1 above
r = 149.626 * 10^9 m
next calculate the Earths velocity of approach towards the sun using this equation
------ (2)
Note :
Rc = 149.626 * 10^9 m
equation 2 becomes
(
therefore : V = 1.624* 10^-5 m/s
Weight=mg
g=GM/r^2
g on venus is 0.80w as radius is kept constant
m of object is kept constant
w α g
w(venus( is 0.8w
Answer:
1)
Acceleration (a)=change in velocity/ change in time
Velocity (v)=90m/s
Time=0.0005s
a=90/0.0005
The acceleration =180000m/s^2 or 180km/s^2
Force = mass x acceleration
m=40g= 0.04kg
F= 0.04x 180000
F= 7200N or 7.2kN
Explanation: