During the light independent reaction, carbon dioxide is fixed by adding it to a <span>5-carbon compound</span>
Answer:
0.55 atm
Explanation:
First of all, we need to calculate the number of moles corresponding to 1.00 g of carbon dioxide. This is given by

where
m = 1.00 g is the mass of the gas
Mm = 44.0 g/mol is the molar mass of the gas
Substituting,

Now we can find the pressure of the gas by using the ideal gas law:

where
p is the gas pressure
V = 1.00 L is the volume
n = 0.0227 mol is the number of moles
R = 0.082 L/(atm K mol) is the gas constant
T = 25.0 C + 273 = 298 K is the temperature of the gas
Solving the formula for p, we find

Answer:
a
Explanation:
im thinking because the water is a room temperature there shouldnt be anm immence amount og heat energy for it to have a good amount of energy tho i could be wrong because its not moving it could have no energy.
Answer:
The answer is
<h2>

</h2>
Explanation:
To find the number of atoms given the number of moles we use the formula
N = n × L
where
N is the number of entities
n is the number of moles
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question

Substitute the values into the above formula and solve
That's
<h3>

</h3>
We have the final answer as
<h3>

</h3>
Hope this helps you
Answer:
The partial pressure of chlorine gas in the mixture is 1.55 atm.
Explanation:
Partial pressure of oxygen gas = 
Partial pressure of nitrogen gas = 
Partial pressure of chlorine gas = 
Total pressure of the mixture of gases = P = 3.30 atm
Using Dalton's law of partial pressure:



The partial pressure of chlorine gas in the mixture is 1.55 atm.