Answer:
CO32−
Explanation:
We have to consider the valencies of the polyatomic ions involved. Recall that it is only a polyatomic ion with a valency of -2 that can form a compound which requires two sodium ions.
When we look closely at the options, we will realize that among all the options, only CO32− has a valency of -2, hence it must be the required answer. In order to be double sure, we put down the ionic reaction equation as follows;
2Na^+(aq) + CO3^2-(aq) ---------> Na2CO3(aq)
3 ethyl, 4 methylheptane. The compound is named by first identifying the longest carbon chain in the structure. in this case the chain has seven carbon atoms thus the prefix hept-.
Next you identify the substituent groups attached to the long carbon chain and name them from the lowest value of the integer assigned to the carbon atoms from either side. From the right, the ethyl group is attached to carbon number 3 while from the left, the methyl group is attached to carbon number 4. We therefore start with the right and name the attached groups first, including the carbon atoms to which they are attached.
Then we also take into consideration the highest number of bonds between the carbon atoms which is one from the question. Thus the suffix -ane is added if a maximum of one bond, -ene,if two bonds and -yne if three bonds.
Answer:
tri-
Explanation:
Examples could be Tri-angle, Tri-cycle, Tri-ceratops
Aniline can be produced from nitro-benzene by reduction. When nitro-benzene reacts with tin (Sn) + hydrochloride acid (HCl) then aniline is produced. The Sn + HCl forms free hydrogen ions which converts the nitro group of the benzene ring to amine group, which is aniline. In place of Sn + HCl. One can use palladium (Pd) hydrogen mixture in presence of ethanol (EtOH). There produces a side product in this reaction which is cyclohexyl amine. The reaction can be shown as.
Answer:
The intermolecular forces between CO3^2- and H2O molecules are;
1) London dispersion forces
2) ion-dipole interaction
3) hydrogen bonding
Explanation:
Intermolecular forces are forces of attraction that exits between molecules. These forces are weaker in comparison to the intramolecular forces, such as the covalent or ionic bonds between atoms in a molecule.
Considering CO3^2- and H2O, we must remember that hydrogen bonds occur whenever hydrogen is bonded to a highly electronegative atom such as oxygen. The carbonate ion is a hydrogen bond acceptor.
Also, the London dispersion forces are present in all molecules and is the first intermolecular interaction in molecular substance. Lastly, ion-dipole interactions exists between water and the carbonate ion.