This is a incomplete question.The complete question is:
A chemist adds 180.0 ml of a 1.77 mol/L of sodium thiosulfate solution to a reaction flask. Calculate the mass in grams of sodium thiosulfate the chemist has added to the flask. Be sure your answer has the correct number of significant digits.
Answer: 50.4 g
Explanation:
To calculate the number of moles for given molarity, we use the equation:
.....(1)
Molarity of sodium thiosulfate solution = 1.77 M
Volume of sodium thiosulfate solution = 180.0 mL = 0.1800 L
Putting values in equation 1, we get:

Mass of sodium thiosulfate =
Thus 50.4 g of sodium thiosulfate the chemist has added to the flask.
Answer:
See explanation below
Explanation:
When the bromine (Br₂) reacts in presence of FeBr₃ with the isopropylbenzene, the isopropylbenzene is a ring activator, therefore, it will promote the substitution in the ortho and para positions. However, as the Isopropyl is voluminic, the ortho position would have steric hindrance and hence, this product is not formed in greater proportions. Instead, the para position becomes more available to reaction, and this product is formed in majority.
The mechanism of reaction can be seen in the following picture, along with the products of the reaction
Hope this helps
Answer:
The pressures will remain at the same value.
Explanation:
A catalyst is a substance that alter the rate of a chemical reaction. It either speeds up the or slows down the rate of a chemical reaction.
While a catalyst affects the rate, it is noteworthy that it has no effect on the equilibrium position of the chemical reaction. A catalyst works by creating an alternative pathway for the reaction to proceed. Most times, it decreases the activation energy needed to kickstart the chemical reaction.
Hence, we know that it has no effect on the equilibrium position. Factors affecting equilibrium position includes, temperature and concentration of reactants and products( pressure in terms of gases).
The reactants and the products here are gaseous, and as such pressure affects the equilibrium position. Now, we have established that the equilibrium position is unaffected. And as such the pressure affecting it does not change.
Thus, we have established that the pressure of the products and reactants are unaffected and as such they remain at their value unaffected.
H2So4 is a strong acid and a strong electrolyte which means that when this dissociates in water, the dissociation process is complete. The first dissociation is
H2 SO4 = H + HSO4-
This can further release H+ and dissociate SO4- instead already
Answer:
Electronegativity increases as you move across the periodic table from left to right.
Explanation: