The molarity of aqueous lithium bromide, LiBr solution is 0.2 M
We'll begin by calculating the number of mole of Pb(NO₃)₂ in the solution.
- Volume = 10 mL = 10 / 1000 = 0.01 L
- Molarity of Pb(NO₃)₂ = 0.250 M
- Mole of Pb(NO₃)₂ =?
Mole = Molarity x Volume
Mole of Pb(NO₃)₂ = 0.25 × 0.01
Mole of Pb(NO₃)₂ = 0.0025 mole
Next, we shall determine the mole of LiBr required to react with 0.0025 mole of Pb(NO₃)₂
Pb(NO₃)₂ + 2LiBr —> PbBr₂ + 2LiNO₃
From the balanced equation above,
1 mole of Pb(NO₃)₂ reacted with 2 mole of LiBr.
Therefore,
0.0025 mole of Pb(NO₃)₂ will react with = 2 × 0.0025 = 0.005 mole of LiBr
Finally, we shall determine the molarity of the LiBr solution
- Mole = 0.005 mole
- Volume = 25 mL = 25 / 1000 = 0.025 L
- Molarity of LiBr =?
Molarity = mole / Volume
Molarity of LiBr = 0.005 / 0.025
Molarity of LiBr = 0.2 M
Learn more about molarity: brainly.com/question/10103895
Answer:
[H3O+] = 1.0*10^-12 M
[OH-] = 0.01 M
Explanation:
We can use the following equation to find the hydronium ion concentration. Plug in the pH and solve for H3O+.
pH = -log[H3O+]
<u>[H3O+] = 1.0*10^-12 M</u>
Now, to find the hydroxide ion concentration we will use the two following equations.
14 = pH + pOH
pOH = -log[OH-]
14 = 12 + pOH
pOH = 2
2 = -log[OH-]
<u>[OH-] = 0.01 M</u>
Answer:
D
Explanation:
Gibb's free energy change(∆G) and Standard electrode potential of electrochemical (Ecell) determine the spontaneity of a reaction.
when ∆G > 0, the reaction is not spontaneous
∆G < 0, the reaction is spontaneous
∆G = 0, the reaction is in equilibrium
when Ecell > 0, the redox reaction is spontaneous
Ecell < 0, the redox reaction is not spontaneous
Ecell = 0, the redox reaction is in equilibrium.
FeS is an example of an ionic compound as in the formula there is a metal of Fe iron chemically bonded to the nonmetal S sulphur. Resulting in a strong electrostatic attraction due to the transfer of valence electrons from the iron to the Sulphur.
Answer:
Objects appear different colours because they absorb some colours (wavelengths) and reflected or transmit other colours. ... For example, a red shirt looks red because the dye molecules in the fabric have absorbed the wavelengths of light from the violet/blue end of the spectrum