Answer:
M_Train>> m_car a_train <a_car
Explanation:
To start the movement of the train or the car, the motorcycle applies a force on the wheels, which starts the acceleration in the case of the train, it has a much greater mass than that of the car, for which to obtain the same acceleration necessary a much greater force
a = F / m
as the mass of the train is greater than that of the car.
a_train <a_car
Something similar happens when the vehicles stop, the engine stops applying force forward and the brakes apply a force backward that creates a negative acceleration that slows down, again as the mass of the train is much greater than the of the car its negative acceleration is much less.
It is good to clarify that to compensate for this the trains have a braking system on all wheels
Answer:
E = 420.9 N/C
Explanation:
According to the given condition:

where,
E = Magnitude of Electric Field = ?
v = speed of charge = 230 m/s
B = Magnitude of Magnetic Field = 0.61 T
θ = Angle between speed and magnetic field = 90°
Therefore,

<u>E = 420.9 N/C</u>
The constant velocity that the spacecraft must travel is : 3.49 * 10⁸ m/s
<u>Given data :</u>
Distance of star from earth = 4.3 light years
Observers time = 3.7 years
<h3>Determine the constant velocity the spacecraft must travel </h3>
Observers time = 3.7 * 365 * 24 * 60 * 60
Distance of star from earth = 4.3 * 9.46 * 10¹⁵
The velocity the spacecraft must travel will be calculated using the equation
V = distance / time
= ( 4.3 * 9.46 * 10¹⁵ ) / ( 3.7 * 365 * 24 * 60 * 60 )
= 3.49 * 10⁸ m/s
Hence we can conclude that The constant velocity that the spacecraft must travel is : 3.49 * 10⁸ m/s
Learn more about space travelling : brainly.com/question/1344685
<em />
<em>Attached below is the missing detail related to the question </em>
We know that:
Solving for Distance:
- Distance = Work / Force
- Distance = 1220 J / 280 N
<h3> Distance = 4.36 m </h3>
Answer:
because they are same and their properties