Answer:
This is due to more hydrogen bonding in ethylene glycol than it is in isopropyl alcohol
Explanation:
The boiling point of isopropyl alcohol is 82.4 °C it contains only a single OH group, hence intermolecular hydrogen bonding is solely responsible for it's boiling point, whereas Ethylene glycol (CH2OHCH2OH) contains 2-OH group and both intermolecular and intramolecular hydrogen bonding are responsible for the higher boiling point of ethylene glycol at 198 °C.
The chemical equation is:
CH₄ + 2O₂ → CO₂ + 2H₂O
First, we calculate the moles of methane present using:
Moles = mass / molecular mass
Moles = 20 / 16
Moles = 1.25
Next, we may observe from the chemical equation that the molar ratio between methane and oxygen is 1 : 2
So the moles of oxygen required are 2 x 1.25
2.5 moles of oxygen required
Mass = moles * molecular mass
Mass = 2.5 * 32
Moles = 80
C. 80 grams O₂
PV = nRT. Where P = pressure, V = volume, n = number of moles, R = universal gas constant and T = temperature. Hope this helps!