Answer:
<em><u>Assuming that the vertical speed of the ball is 14 m/s</u></em> we found the given values:
a) V₀ = 23.4 m/s
b) h = 27.9 m
c) t = 0.96 s
d) t = 4.8 s
Explanation:
a) <u>Assuming that the vertical speed is 14 m/s</u> (founded in the book) the initial speed of the ball can be calculated as follows:

<u>Where:</u>
: is the final speed = 14 m/s
: is the initial speed =?
g: is the gravity = 9.81 m/s²
h: is the height = 18 m
b) The maximum height is:


c) The time can be found using the following equation:


d) The flight time is given by:

I hope it helps you!
A) it is always changing direction
We are given –
- Mass of boiling ball is, m = 4 kg
- Speed is, v = 3 m/s
- Momentum, P =?
As we know –
↠Momentum = Mass × Speed(Velocity)
↠Momentum = 4 × 3 kgm/s
↠Momentum = 12 kgm/s
- Henceforth,Momentum will be 12 kgm/s.
Answer:
(a) 1.093 rad/s^2
(b) 4.375 rad/s
(c) 8.744 rad/s
(d) 67.845 rad
Explanation:
initial angular velocity, ωo = 0
time, t = 8s
angular displacement, θ = 35 rad
(a) Let α be the angular acceleration.
Use second equation of motion for rotational motion

By substituting the values
35 = 0 + 0.5 x α x 8 x 8
α = 1.093 rad/s^2
(b) The average angular velocity is defined as the ratio of total angular displacement to the total time taken .
Average angular velocity = 35 / 8 = 4.375 rad/s
(c) Let ω be the instantaneous angular velocity at t = 8 s
Use first equation of motion for rotational motion
ω = ωo + αt
ω = 0 + 1.093 x 8 = 8.744 rad/s
(d) Let in next 5 seconds the angular displacement is θ.

By substituting the values
θ = 8.744 x 5 + 0.5 x 1.093 x 5 x 5
θ = 67.845 rad
Answer:
pressure in liquids is given as:
P= hpg
where h is the depth
where p is the density
where g is 10
Explanation:
From the formula above
p = 10 X 1000 X 10
p = 100000N/m