Answer:
The rate of change of the area when the bottom of the ladder (denoted by
) is at 36 ft. from the wall is the following:

Explanation:
The Area of the triangle is given by
where
(by using the Pythagoras' Theorem) and
is the length of the base of the triangle or the distance between the bottom of the ladder and the wall.
The area is then

The rate of change of the area is given by its time derivative


Product rule
Chain rule


In here we can identify
,
and
.
The result is then

Is there a multiple choice?
Work is done. work=forcexdisplacement. the ice skater glides 2 meters (displacement), so yes.
Answer: 114
Explanation:
The mass number of an element gives the sum of the protons and the neutrons inside the nucleus of one atom of that element, while the atomic number of an element gives the number of protons inside one atom of that element.
We can infer the number of neutrons inside one atom of Osmium from its mass number and atomic number.
The atomic number of osmium is 76, so each atom of osmium has 76 protons
The (average) mass number of osmium is 190, so each atom of osmium has (on average) 190 protons+neutrons
So, in order to find the average number of neutrons, we can subtract the atomic number from the mass number:

Answer:
1.2 x 10¹¹ kgm²/s
Explanation:
m = mass of the airplane = 39043.01
r = altitude of the airplane = 9.2 km = 9.2 x 1000 m = 9200 m
v = speed of airplane = 335 m/s
L = Angular momentum of airplane
Angular momentum of airplane is given as
L = m v r
Inserting the values
L = (39043.01 ) (335) (9200)
L = (39043.01 ) (3082000)
L = 1.2 x 10¹¹ kgm²/s