Answer:
Resonance structures have <u> </u><u>same</u><u> </u> connectivity of atoms and <u> differ only in</u> distribution of electrons.
Explanation:
Atoms supply the electrons from their outer electron shells. Electrons are found free in nature and are grouped around the nucleus into shells. Electrons can be further explained as negatively charged subatomic particle. Electrons have properties of both particles and waves and they can be moved around.
Resonance structures are imaginary structures and not all of them are created equally. Resonance structures have two or more possible electron structures, and, the resonance structures for a particular substance sometimes have different energy and stability. When resonance structures are identical, they are important descriptions of the molecule. The position of the atoms is the same in the various resonance structures of a compound, but the electrons are distributed differently around the structure.
Answer:
The two philosophers furthermore seem to share the same conception of the conditions of human freedom. For Hegel as well as Kant, a theory of morality and political right devoted to advancing the cause of freedom must require more than just the absence of obstacles preventing the satisfaction of our animal passions.
Explanation:
Hope that help ;)
speed of tortoise is given as v1 = 0.14 m/s
speed of hare is given as v2 = 20*0.14 = 2.8 m/s
now let say the total length of the path is "d"
so the total time taken by the tortoise to cover this

now given that hare took rest for 1 min
so total time of run for hare is (t - 60)s
so the distance that hare covered is given by

now by above two equations



and the time t is given by


so part a)
t = 63 s
part b)
d = 8.82 m
Answer:
13.7m
Explanation:
Since there's no external force acting on the astronaut or the satellite, the momentum must be conserved before and after the push. Since both are at rest before, momentum is 0.
After the push

Where
is the mass of the astronaut,
is the mass of the satellite,
is the speed of the satellite. We can calculate the speed
of the astronaut:

So the astronaut has a opposite direction with the satellite motion, which is further away from the shuttle. Since it takes 7.5 s for the astronaut to make contact with the shuttle, the distance would be
d = vt = 1.83 * 7.5 = 13.7 m
Answer:
Approximately
(assuming that the melting point of ice is
.)
Explanation:
Convert the unit of mass to kilograms, so as to match the unit of the specific heat capacity of ice and of water.

The energy required comes in three parts:
- Energy required to raise the temperature of that
of ice from
to
(the melting point of ice.) - Energy required to turn
of ice into water while temperature stayed constant. - Energy required to raise the temperature of that newly-formed
of water from
to
.
The following equation gives the amount of energy
required to raise the temperature of a sample of mass
and specific heat capacity
by
:
,
where
is the specific heat capacity of the material,
is the mass of the sample, and
is the change in the temperature of this sample.
For the first part of energy input,
whereas
. Calculate the change in the temperature:
.
Calculate the energy required to achieve that temperature change:
.
Similarly, for the third part of energy input,
whereas
. Calculate the change in the temperature:
.
Calculate the energy required to achieve that temperature change:
.
The second part of energy input requires a different equation. The energy
required to melt a sample of mass
and latent heat of fusion
is:
.
Apply this equation to find the size of the second part of energy input:
.
Find the sum of these three parts of energy:
.