Answer: True
Explanation:
As the spring is compressed, it acumulates energy, and the spring "wants to release that energy". This acumulated energy, (potential energy) is called "elastic potential energy" because of the elastical nature of the spring, that when compressed it wants to return to the original shape. So the sentence is true
Answer:
The ball experiences the greater momentum change
Explanation:
The momentum change of each object is given by:

where
m is the mass of the object
v is the final velocity
u is the initial velocity
Both objects have same mass m and same initial velocity u. So we have:
- For the ball, the final velocity is

Since it bounces back (so, opposite direction --> negative sign) with same speed (so, the magnitude of the final velocity is still u). So the change in momentum is

- For the clay, the final velocity is

since it sticks to the wall. So, the change in momentum is

So we see that the greater momentum change (in magnitude) is experienced by the ball.
The 61.0 kg object<span> ... F = (300kg)(6.673×10−11 </span>N m<span>^2 </span>kg<span>^−2)(61kg)/(.225m)^2. F = 2.412e-5 </span>N<span> towards the 495 </span>kg<span> block. </span>b. [195kg] ===.45m ... (b<span>) You cannot achieve this </span>position<span>. For the </span>net force<span> to become zero, one or both of the </span>masses<span> must ...</span>
The radius of the cylinder is equal to half the diameter:

The volume of the cylinder is given by:

where h is the heigth of the cylinder. Converting into meters,

And the density of the material will be given by the ratio between the mass and the volume:

Answer:
Usually the coefficient of friction remains unchanged
Explanation:
The coefficient of friction should in the majority of cases, remain constant no matter what your normal force is. When you apply a greater normal force, the frictional force increases, and your coefficient of friction stays the same. Here's another way to think about it: because the force of friction is equal to the normal force times the coefficient of friction, friction is increased when normal force is increased.
Plus, the coefficient of friction is a property of the materials being "rubbed", and this property usually does not depend on the normal force.