Missing graph. I attach it in the answer.
In a uniformly accelerated motion, the velocity at time t is given by:

where a is the acceleration and t is the time.
Given the previous equation, if we plot v(t) versus t, we find a straight line; moreover, a (the acceleration) represents the slope of the curve.
Looking at the graph, we see that when the time goes from 10 s to 20 s, the velocity increases from 4 m/s to 6 m/s. Therefore the slope of the curve is

and this corresponds to the acceleration.
So, the correct answer is <span>
0.2 m/s2.</span>
The elements of the periodic table sorted by atomic number. click on any element's name for further chemical properties, environmental data or health effects. This list contains the 118 elements of chemistry. For chemistry students and teachers: The tabular chart on the right is arranged by Atomic number.
placing a magnetically hard material in a strong magnetic field
the scientific study of natural forces such as light, sound, heat, electricity, pressure, etc.
Answer:
The maximum speed of sonic at the bottom of the hill is equal to 19.85m/s and the spring constant of the spring is equal to (497.4xmass of sonic) N/m
Energy approach has been used to sole the problem.
The points of interest for the analysis of the problem are point 1 the top of the hill and point 2 the bottom of the hill just before hitting the spring
The maximum velocity of sonic is independent of the his mass or the geometry. It is only depends on the vertical distance involved
Explanation:
The step by step solution to the problem can be found in the attachment below. The principle of energy conservation has been applied to solve the problem. This means that if energy disappears in one form it will appear in another.
As in this problem, the potential and kinetic energy at the top of the hill were converted to only kinetic energy at the bottom of the hill. This kinetic energy too got converted into elastic potential energy .
x = compression of the spring = 0.89