Ek - kinetic energy
v2 - unknown speed
v1 - 40 m/s (initial speed)
Ek=1/2 mv^2
Ek in half way up is 1/2 Ek (with another V)
So, Ek in the beginning is Ek1= 1/2 mv1^2
and in half way Ek2=1/2 mv2^2
Ek1=2*Ek2
1/2 mv1^2 = 2* 1/2 mv2^2
1/2 v1^2 = v2^2
1/2 40^2 = v2^2
800 = v2^2
v2 = sqrt (800) = 28,3 m/s
Well, the figure seems to report that velocity is measured in m/s²... That label should say m/s. (Unless of course this is the graph of acceleration over time, but then the answer would probably be more complicated than the given choices.)
If the graph indeed shows velocity, and the unit is just a typo, then the displacement from A to D is equal to the area under the curve.
From A to B, the area is of a triangle with height 4 m/s and base 1 s, hence the area is 1/2 • (4 m/s) • (1 s) = 2 m.
From B to C, it's a rectangle with length 3 s and height 4 m/s, hence with area (3 s) • (4 m/s) = 12 m.
From C to D, it's a trapezoid with "height" 2 s and bases 4 m/s and 2 m/s, hence with area 1/2 • (4 m/s + 2 m/s) • (2 s) = 6 m.
The total displacement is then 2 m + 12 m + 6m = 20 m.
Answer:
Solids can hold their shape because their molecules are tightly packed together. Atoms and molecules in liquids and gases are bouncing and floating around, free to move where they want. The molecules in a solid are stuck in a specific structure or arrangement of atoms.
The value of Q will be -8 C.
In the presence of an electric or magnetic field, matter experiences a force due to its electric charge.
A moving electric charge generates a magnetic field, and an electric charge has an accompanying electric field.
The information provided in the issue is;
The separation between and is 2m.
The separation between and is 2m.
An origin charge equals +2 C
The electric fields are identical in magnitude but are facing in different directions. As a result, the following relationship can be used
Q/16=1/2
The value of Q will be -8 C.
Learn more about electric charge here
brainly.com/question/8163163
#4174
The mass of a rollercoaster car moving at a velocity of 30 meters/second and has a momentum of 2.5 × 104 kilogram meters/second is 8.3 × 10²kg.
<h3>How to calculate mass?</h3>
The mass of the roller coaster car can be calculated using the following formula:
P = m × v
Where;
- P = momentum
- m = mass
- v = velocity
m = 2.5 × 10⁴ ÷ 30
m = 8.3 × 10²kg
Therefore, the mass of a rollercoaster car moving at a velocity of 30 meters/second and has a momentum of 2.5 × 104 kilogram meters/second is 8.3 × 10²kg.
Learn more about mass at: brainly.com/question/19694949
#SPJ1