Answer:


Explanation:
<u>Given Data:</u>
Weight = W = 65 N
Height = h = 2 m
Time = t = 4 secs
<u>Required:</u>
Power = P = ?
Work Done in the form of Potential Energy = P.E. = ?
<u>Formula:</u>
P.E. = Wh
P = P.E. / t
<u>Solution:</u>
P.E. = (65)(2)
P.E = 130 Joules
P = P.E. / t
P = 130 / 4
P = 32.5 Watts
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807 </h3>
The third law of thermodynamics,the principle of temperature.
This law states that the entropy at 0 is always equel to 0.
This means that it is impossible to cool down a perfect 0 or absolute 0(-273.15 C)
Answer:
opposite charges attract each other while same charges repel each other.
~batmans wife dun dun dun.....
Answer:
N = 23.4 N
Explanation:
After reading that long sentence, let's solve the question
The contact force is the so-called normal in this case we can find it by writing the translational equilibrium equation for the y axis
N - w₁ -w₂ =
N = m₁ g + m₂ g
N = g (m₁ + m₂)
let's calculate
N = 9.8 (0.760 + 1.630)
N = 23.4 N
This is the force of the support of the two blocks on the surface.
The best way in handling in this situation is that in order for the astronaut to be able to get back to the shuttle is that he or she should take an object from his or her tool belt and to be thrown out away from the shuttle. This will allow her to weight lightly and safely return to the shuttle and would be easier for his or her to do so.