Answer:
M₀ = 5i - 4j - k
Explanation:
Using the cross product method, the moment vector(M₀) of a force (F) is about a given point is equal to cross product of the vector A from the point (r) to anywhere on the line of action of the force itself. i.e
M₀ = r x F
From the question,
r = i + j + k
F = 1i + 0j + 5k
Therefore,
M₀ = (i + j + k) x (1i + 0j + 5k)
M₀ = ![\left[\begin{array}{ccc}i&j&k\\1&1&1\\1&0&5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C1%261%261%5C%5C1%260%265%5Cend%7Barray%7D%5Cright%5D)
M₀ = i(5 - 0) -j(5 - 1) + k(0 - 1)
M₀ = i(5) - j(4) + k(-1)
M₀ = 5i - 4j - k
Therefore, the moment about the origin O of the force F is
M₀ = 5i - 4j - k
Answer:
Actually it's 2.50 m/s, sorry
Explanation:
It is solved by using momentum conservation equation
combined mass of crow and feeder = 450+670=1120 gm
let the recoil speed of feeder be v m/s
Then applying momentum conservation we get;
1120×1.5 = 670×v
v= 2.50 m/s
the speed at which the feeder initially recoils backwards = 2.50 m/s
Answer:
(A) Gravity is you're answer.
Explanation:
When an object or human is falling at an increased rate, The force of gravity is taking place.
The rest energy of a particle is

where

is the rest mass of the particle and c is the speed of light.
The total energy of a relativistic particle is

where v is the speed of the particle.
We want the total energy of the particle to be twice its rest energy, so that

which means:


From which we find the ratio between the speed of the particle v and the speed of light c:

So, the particle should travel at 0.87c in order to have its total energy equal to twice its rest energy.