By the formula of torque balance we know that

here we know that
r = distance of force
F = applied force
so here we know that as we will take large edge knife then the distance of force will increase
due to this the torque will also increase in it so it is easy to pear it
So here we can say


so output force will increase in this case
So here the correct answer would be
<em>b. the longer the knife, the stronger the output force</em>
The mass of the cold water, given the data from the question is 500 g
<h3>Data obtained from the question</h3>
- Mass of warm water (Mᵥᵥ) = 200 g
- Temperature warm water (Tᵥᵥ) = 75 °C
- Temperature of cold water (T꜀) = 5 °C
- Equilibrium temperature (Tₑ) = 25 °C
- Specific heat capacity of the water = 4.184 J/gºC
- Mass of cold water (M꜀) =?
<h3>How to determine the mass of the cold water </h3>
Heat loss = Heat gain
MᵥᵥC(Tᵥᵥ – Tₑ) = M꜀C(Tₑ – T꜀)
200 × 4.184 (75 – 25) = M꜀ × 4.184(25 – 5)
41840 = M꜀ × 83.68
Divide both side 83.68
M꜀ = 41840 / 83.68
M꜀ = 500 g
Learn more about heat transfer:
brainly.com/question/6363778
#SPJ1
<h3>
Answer:</h3>
20 seconds
<h3>
Explanation:</h3>
<u>We are given</u>;
- Power of the engine as 400 watts
- Force as 100 N
- Distance the object is lifted up as 80 m
We are required to determine the time taken.
- We need to know that power is the rate of work done
Therefore;
But, work done = Force × distance
Work done = 100 N × 80 m
= 8000 Joules
- Since , Power = Work done ÷ time
Then, time = Work done ÷ Power
Thus;
Time = 8000 J ÷ 400 W
= 20 s
Therefore, the time taken by the engine to lift the object is 20 seconds
<span>The eastern margin is a convergent boundary subduction zone under the South American Plate and the Andes Mountains, forming the Peru–Chile Trench. The southern side is a divergent boundary with the Antarctic Plate, the Chile Rise, where seafloor spreading permits magma to rise.</span>
The near-point distance of the eye is 11 cm.
<h3>What is the eye's near-point distance?</h3>
The near-point distance of the eye is the closest possible distance an object can be from the eye in order for its image to be formed on the retina. It can also be termed the closest distance of accommodation.
The near-point distance of the eye in the given scenario can be calculated using the lens formula given below:
1/f = 1/v + 1/u
where;
f = focal length
v = image distance
u = object distance
From the data provided;
f = 2.20 cm
v = 2.75 cm
u = ?
Solving for u:
1/u = 1/f - 1/v
1/u = 1/2.20 - 1/2.75
1/u = 0.91
u = 11 cm
In conclusion, the lens formula is used to determine the eye's near-point distance.
Learn more about eye's near-point distance at: brainly.com/question/16391605
#SPJ1