Work = (force) x (distance)
Each time she lifts the weight, she does
(550 N) x (0.5 m) = 275 joules of work against gravity.
Each time she lets the bar down gently, gravity does
(550 N) x (0.5 m) = 275 joules of work against her muscles.
If the human physical muscular system were 100% efficient, and capable
of absorbing work as well as spending it, then the bodybuilder would do
exactly zero work in the process of 1-up followed by 1-down.
To solve letter a:
d1 = 85t1 = 16 km,
85t1 = 16,
t1 = 16 / 85 = 0.1882 h = 11.29 min.
d2 = 115t2 = 16 km,
115t2 = 16,
t2 = 16 / 115 = 0.139 h = 8.35 min.
t1 - t2 = 11.29 - 8.35 = 2.94 min.
Car #2 arrives 2.94 minutes sooner.
To solve letter b:
15 min = 1/4 h = 0.25 h.
d1 = d2,
115t = 85(t + 0.25),
115t = 85t + 21.25,
115t - 85t = 21.25,
30t = 21.25,
t = 21.25 / 30 = 0.71 h,
d = 115 * 0.71 = 81.65 km.
<span>1.an electric is induced when you move a magnet through a coil wire
2.a greater electric current is induced if you add more loops of wire</span>
Answer:
21 m/s.
Explanation:
The computation of the wind velocity is shown below:
But before that, we need to find out the angles between the vectors
53° - 35° = 18°
Now we have to sqaure it i.e given below
v^2 = 55^2 + 40^2 - 2 · 55 · 40 · cos 18°
v^2 = 3025 + 1600 - 2 · 55 · 40 · 0.951
v^2 = 440.6
v = √440.6
v = 20.99
≈ 21 m/s
Hence, The wind velocity is 21 m/s.