The correct answer to the question is : D) Be moving at a constant velocity.
EXPLANATION:
As per Newton's first laws of motion, every body continues to be at state of rest or of uniform motion in a straight line unless and until it is compelled by some external unbalanced forces acting on it.
Hence, it is the unbalanced force which changes the state of rest or motion of a body. Balanced force is responsible for keeping the body to be either in static equilibrium or in dynamic equilibrium.
As per the options given in the question, the last one is true for an object under balanced forces.
B) The amount of work done
Answer:
Explanation:
According to <u>Coulomb's Law:</u>
<em>"The electrostatic force
between two point charges
and
is proportional to the product of the charges and inversely proportional to the square of the distance
that separates them, and has the direction of the line that joins them".</em>
<em />
Mathematically this law is written as:
Where:
is the electrostatic force
is the Coulomb's constant
and
are the electric charges
is the separation distance between the charges
Solving:
My guess is either they come to a stop when they come in contact, or one ball is going to go the opposite direction.
Answer:
27.1m/s
Explanation:
Given parameters:
Height of the building = 30m
Initial velocity = 12m/s
Unknown:
Final velocity = ?
Solution:
We apply one of the kinematics equation to solve this problem:
v² = u² + 2gh
v is the final velocity
u is the initial velocity
g is the acceleration due to gravity
h is the height
v² = 12² + (2 x 9.8 x 30)
v = 27.1m/s