Depending on the type of pea, the peas should come to the top as they are lighter and larger. Then just scoop or brush them off into another container. If you separate it into smaller batches and work them one by one, you should then find you get pure rice batches left which you can put in their own container.
Answer:
277.7 g of CO2
Explanation:
Equation of reaction
C13H18O2 + 11O2 ---> 13CO2 + 9H2O
From the equation of reaction
1 mole of ibuprofen produces 13 moles of CO2
Molar mass of ibuprofen is 206g
Molar mass of CO2 is 44g
13 moles of CO2 weighs 572g
Therefore, 100g of ibuprofen will produce (100×572)/206 of CO2
= 277.7g
Answer:
I think it is called a Mixture
Explanation:
Sorry if it is wrong
Answer:
The products are 4-bromo-2-hexene and 2-bromo-3-hexene
Explanation:
The reaction starts between terminal carbon of of of the double bonds and
. After attaching
to the carbon, one double bond disapears leaveing nearby CH positively charged. This intermediate is a resonance hybrid of two possible structures. Reaction of bromide at one of the carbons gives the 1,2-addition product and at the other carbon gives 1,4-addition product.
Answer:
B. Infrared.
Explanation:
Referring to the electromagnetic spectrum, ultraviolet rays can be measured with a frequency of 10‐⁸, infrared has a frequency of 10‐⁵, visible radiation has a frequency of 0.5 x 10‐⁶ meanwhile X-rays show a frequency of 10‐¹⁰.
Hence, the largest magnitude among the rest goes to infrared rays, which makes B the correct answer.