Answer: 8.24x10^5 years, or 8.24x10^3 centuries
Explanation: Sequential conversions to arrive at a total population rate of 2.31x10^10 atoms/sec for the entire population. Total seconds would be (6.02x10^23 atoms/2.31x10^10 atoms/sec) = 2.60x10^13 seconds. No breaks allowed, then (2.60x10^13 seconds)/(3.1536x10^7 sec/year)= 8.24x10^5 years.
Answer:
Explanation:
HCl + NaOH = NaCl + H₂O.
1 mole 1 mole 1 mole 1 mole
6.93 g of hydrochloric acid = 6.93 / 36.5 = .189 mole of HCl
2.4 g of NaOH = 2.4 / 40 = .06 mole of NaOH
NaOH is in short supply so it is the limiting reagent .
1 mole of NaOH reacts with 1 mole of HCl to give 1 mole of Water
.06 mole of NaOH will react with .06 mole of HCl to give .06 mole of water
Water formed = .06 mole
= .06 x 18 = 1.08 g
= 1.1 g
The reaction of nitric acid and sulfuric acid is highly exothermic so it releases a lot of heat. If the temperature is not controlled, the reaction could go into thermal runaway, which is potentially extremely hazardous.
Explanation:
Monosaccharides are simple carbohydrates that cannot be further hydrolyzed to simpler carbohydrates. They contain between three and six carbon atoms per molecule.
Polysaccharides are complex carbohydrates . They are condensation polymers derived from very long chains of monosaccharide units.
Structurally, polysaccharides are made up of repeating units of monosaccharides.
Answer:
Keep it simple. If all the oxygen contained in the 200 grams of potassium chlorate is produced in the decomposition, then all we have to do is find out how many grams of oxygen are there in the 200 grams. This we can do by calculating the ratio of oxygen mass to the whole. Using 39.1 for potassium, 35.45 for chlorine and 3 times 16, or 48 for the oxygen, we get a total of 122.55 grams per mole for potassium chlorate, of which 48 grams are oxygen. This ratio is 48/122.55. This ratio times the original 200 grams of the compound, gives us 78.34 grams of oxygen produced.
Explanation: