Answer:
4- A material that transfers heat energy more easily than another material will experience a greater rate of thermal energy loss than an object that does not transfer heat energy easily.
Explanation:
Thermal energy loss has to do with loss of heat energy by a body to another body or its environment. The aim of the process is usually the attainment of thermal equilibrium between the body and its environment.
On a cold day, a material that transfers thermal energy more easily will loose thermal energy faster than an object that does not transfer thermal energy. The rate of heat transfer of a body determines its rate of loss of thermal energy.
Answer : The number of moles present in ammonia is, 70.459 moles.
Solution : Given,
Mass of ammonia = 
Molar mass of ammonia = 17.031 g/mole
Formula used :


Therefore, the number of moles present in ammonia is, 70.459 moles.
Answer:
2Cl——>Cl2+2e-
Explanation:
It shows an electron loss or gain
Answer:
Honey is an homogeneous mixture
Salsa is an heterogeneous mixture
Explanation:
Honey is a sweet uniformly colored liquid that can be of a dark variety or of clear golden color. Honey is made in nature by bees from flower nectar and is used as a food additive or sweetener
Honey is a homogeneous mixture because the concentration of the components of honey are uniformly distributed throughout the mixture. Every portion has the same concentration of components
Salsa is a sauce made by mixing chopped tomatoes, onions, chilies, lime juice and seasoning and therefore consists of both solid and liquid components mixed in varying proportion such that part will have continuous that comes in between different types of solid and no two parts have exactly the same composition
Therefore, salsa is an heterogenous liquid.
Answer:
0.11%
Explanation:
Without mincing words, let us dive straight into the solution to the question/problem. The first step to solve this question is to write out the chemical reaction, that is the reaction showing the dissociation of acetic acid.
CH3COOH <=======================================> CH3COO⁻ + H⁺
Initially, the amount present in the acetic acid which is = 12M, the concentration for CH3COO⁻ and H⁺ is 0 respectively.
At equilibrium, the amount present in the acetic acid which is = 12 - x, the concentration for CH3COO⁻ = x and H⁺ = x respectively. Note that the ka for acetic acid = 1.8 × 10⁻⁵.
1.8 × 10⁻⁵ = x²/ 14 - x. Therefore, x = 0.0158 M.
The next thing to do is to calculate for the percentage of dissociation, this can be done as given below:
percentage of dissociation = x/14 × 100. Recall that the value that we got for x = 0.0158 M. Hence, the percentage of dissociation = 0.0158 M/ 14m × 100 = 0.11%