To answer this question a balanced chemical equation is necessary. The correct equation is: N2 + 3H2 = 2NH3
From this equation, one mole of nitrogen react with 3 moles of hydrogen to give 2 moles of ammonia.
Therefore, the mole ratio of NH3 to N2 is 2:1
<span>H2CO3 <---> H+ + HCO3-
NaHCO3 <---> Na+ + HCO3-
When acid is added in the buffer, the excess H+ of that acid reacts with HCO3- to form H2CO3, and due to this NaHCO3 dissociates into HCO3- to attain the equilibrium. and hence there is no net effect of H+ due to pH remain almost constant.
when a base is added to the buffer, the OH- ion of base react eith H+ ion present in buffer, then to attain equilibrium of H+ ion, the H2CO3 dissociates to produce H+ ion, but now there is the excess of HCO3- due to which Na+ ion react with them to attain equilibrium of HCO3-. hence there is again no net change in H+ ion due to which pH remain constant.....</span>
I think its the first 1 C i remember answering this question on my school work
The elements are identified by the number of protons of the atom, which is its atomic number.
In this case the number of protons 39 (atomic number 39) permit you to identify the element as gallium.
Now, to identify the isotope you tell the name of the element and add the mass number.
The mass number is the sum of the protons and the neutrons
In this case, the number of neutrons is the original 39 plus the 2 added suddenly, i.e. 39 + 2 = 41, so the mass number is 31 + 41 = 72
Therefore, the isotope is gallium - 72.
Answer: isotope gallium - 72