The minimum distance is the perpendicular distance. So establish the distance from the origin to the line using the distance formula.
The distance here is: <span><span>d2</span>=(x−0<span>)^2</span>+(y−0<span>)^2
</span> =<span>x^2</span>+<span>y^2
</span></span>
To minimize this function d^2 subject to the constraint, <span>2x+y−10=0
</span>If we substitute, the y-values the distance function can take will be related to the x-values by the line:<span>y=10−2x
</span>You can substitute this in for y in the distance function and take the derivative:
<span>d=sqrt [<span><span><span>x2</span>+(10−2x<span>)^2]
</span></span></span></span>
d′=1/2 (5x2−40x+100)^(−1/2) (10x−40)<span>
</span>Setting the derivative to zero to find optimal x,
<span><span>d′</span>=0→10x−40=0→x=4
</span>
This will be the x-value on the line such that the distance between the origin and line will be EITHER a maximum or minimum (technically, it should be checked afterward).
For x = 4, the corresponding y-value is found from the equation of the line (since we need the corresponding y-value on the line for this x-value).
Then y = 10 - 2(4) = 2.
So the point, P, is (4,2).
<span>Let n, n+2, and n+4 represent the three consecutive even integers. Or 2 in your case</span>
Answer:
Step-by-step explanation:
the warehouse is the best buy because you get 44oz off tuna but if you buy the three pack you get 19.5oz and if you buy the five pack from store you 22.5oz of tuna
so the warehouse has the best deal on tuna
Answer:
A constant of $20 can be multiplied by the number of months to find the amount in the account.
Step-by-step explanation:
4×20=80
7×20=140