Answer:
The power dissipated in either one of the parallel resistors is 2 V
Explanation:
Given;
two parallel resistors, R₁ and R₂ = 2 ohms
The total resistance of the Two resistors of 2 ohms connected in parallel is;

when connected to another resistor of 1 ohm in series, the total resistance becomes;
Rt = R₁ + R₂
Rt = 1 + 1 = 2 ohms
Current in the circuit, I = voltage / total resistance
= 2 /2 = 1 A
the overall circuit has been resolved to series connection, and current flow in series circuit is constant.
Power = I²R
Thus, power dissipated in either one of the parallel 2 ohms resistors is;
Power = I²R = (1)² x 2 = 2 V
Answer:
The magnitude of the acceleration of the box is 2 m/s².
Explanation:
Given:
Mass of the box,
kg
Force acting towards east,
N
Frictional force acting towards west,
N
Let the acceleration be
m/s².
Now, net force acting on the box towards east is given as:

From Newton's second law of motion,

Therefore, the magnitude of the acceleration of the box is 2 m/s².
Mira is much bigger than the Sun.
Only very massive stars will go through a supernova stage, causing the outer layer to explode away and the core to collapse in on itself, becoming very dense.
Answer:
178.4 times
Explanation:
We have Newton formula for attraction force between 2 objects with mass and a distance between them:

where
is the gravitational constant on Earth.
is the masses of the 2 objects. and R is the distance between them.
From here we can calculate the ratio of gravitational force between the moon and the sun

We can divide the top and bottom by G and M





So the gravitational force of the sun is about 178 times greater than that of the moon to an object on Earth
Twisted pair cable consists of a pair of insulated wires twisted together, which is adapted in the field of telecommunication for a long time. With the cable twisting together, it helps to reduce noise from outside sources and crosstalk on multi-pair cables. Basically, twisted pair cable can be divided into two types: unshielded twisted-pair (UTP<span>) and shielded twisted-pair (STP). The former serves as the most commonly used one with merely two insulated wires twisted together. Any data communication cables and normal telephone cables belong to this category. However, shielded twisted pair distinguishes itself from UTP in that it consists of a foil jacket which helps to prevent crosstalk and noise from outside source. It is typically used to eliminate inductive and capacitive coupling, so it can be applied between equipment, racks and buildings. There exist following several different types of
</span><span>Coaxial cable acts as a high-frequency transmission cable which contains a single solid-copper core. A coaxial cable has over 80 times the transmission capability of the twisted-pair. It is commonly used to deliver television signals and to connect computers in a network as well, so people may get more familiar with this kind of cable. There are two coaxial cables: 75 Ohm and 50 Ohm.
</span>
omputing and data communications are fast-moving technologies. There comes a new generation of transmission media—fiber optic cable. It refers to the complete assembly of fibers, which contain one or more optical fibers that are used to transmit data. Each of the optical fiber elements is individually coated by plastic layers and contained in a protective tube. Fiber optic cable transmits data as pulses of light go through tiny tubes of glass, the transmission capacity of which is 26,000 times higher than that of twisted-pair cable. When comparing with coaxial cables, fiber optic cables are lighter and reliable for transmitting data. They transmit information using beams of light at light speed rather than pulses of electricity.
Nowadays, two types of fiber optic cables are widely adopted in the field of data transfer—single-mode fiber optic cables and multimode fiber optic cables. A single-mode optical fiber is a fiber that has a small core, and only allows one mode of light to propagate at a time. So it is generally adapted to high speed, long-distance applications. While a multimode optical fiber is a type of optical fiber with a core diameter larger than the wavelength of light transmitted and it is designed to carry multiple light rays, or modes at the same time. It is mostly used for communication over short distances because of its high capacity and reliability, serving as a backbone applications in buildings.