W=mgh W=(20)(9.8)(1) w=196J
<h3><u>Answer;</u></h3>
= 8.55 Joules
<h3><u>Explanation;</u></h3>
Work done is the product of force and the distance moved by an object.
Work done = Force × distance
Force = 95 Newtons
Distance = X2 -X1
= 4 - (-5)
= 9 cm
Thus;
work done = 95 × 9/100
<u>= 8.55 Joules </u>
The watt is a rate, similar to something like speed (miles per hour) and other time-interval related measurements.
Specifically, watt means Joules per Second. We are given that the electrical engine has 400 watts, meaning it can make 400 joules per second. If we need 300 kJ, or 3000 Joules, then we can write an equation to solve the time it would take to reach this amount of joules:
w * t = E
w: Watts
t: Time
E: Energy required
(Watts times time is equal to the energy required)
<u>Input our values:</u>
400 * t = 3000
(We need to write 3000 joules instead of 300 kilojoules, since Watts is in joules per second. It's important to make sure your units are consistent in your equations)
<u>Divide both sides by 400 to isolate t:</u>
<u />
= 
t = 7.5 (s)
<u>It will take 7.5 seconds for the 400 W engine to produce 300 kJ of work.</u>
<u></u>
If you have any questions on how I got to the answer, just ask!
- breezyツ
Answer:

Explanation:
GIVEN
diameter = 15 fm =
m
we use here energy conservation

there will be some initial kinetic energy but after collision kinetic energy will zero

on solving these equations we get kinetic energy initial
J ..............(i)
That is, the alpha particle must be fired with 35.33 MeV of kinetic energy. An alpha particle with charge q = 2 e
and gains kinetic energy K =e∆V ..........(ii)
by accelerating through a potential difference ∆V
Thus the alpha particle will
just reach the
nucleus after being accelerated through a potential difference ∆V
equating (i) and second equation we get
e∆V = 35.33 Me V

Answer:
Part a)

Part b)
North of East
Explanation:
Speed of train towards East = 60 km/h
displacement towards East is given as

now it turns towards 50 degree East of North
so its distance is given as


then finally it moves towards west for 50 min

Now the total displacement of the train is given as



now total time duration of the motion is given as


now average velocity is given as


Part a)
magnitude of the average velocity is given as



Part b)
Direction of the velocity is given as


North of East