P waves<span> are produced by all earthquakes. They are compression </span>waves<span> that </span>form <span>when rocks break due to pressure in the Earth. S </span>waves<span> are secondary </span>waves<span> that are also created during an earthquake. They travel at a slower speed than the </span>p-waves<span>.
S waves are the waves that come after the earthquake and P waves
</span>
The Doppler Effect provides the equation for the
calculation of apparent frequency:
f=fo[vo/(vo-vr)]
where:<span>
vo=source wave velocity
vr=relative speed between source and observer
f=apparent frequency
fo=source frequency </span>
<span>
The velocity of the doppler wave is
v=λf</span>
where λ is light wavelength. Hence,
v=λfo[vo/(vo-vr)]
Based on the equation, we can say that wave
velocity will always be defined by one and only one wavelength.
Therefore the answer is letter C.
<span> </span>
The best and most correct answer among the choices provided by your question is the third choice or letter C.
<span>The statement "Your hypothesis must be testable." is true about the scientific process.
</span>I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
Answer:
Minimum thickness; t = 9.75 x 10^(-8) m
Explanation:
We are given;
Wavelength of light;λ = 585 nm = 585 x 10^(-9)m
Refractive index of benzene;n = 1.5
Now, let's calculate the wavelength of the film;
Wavelength of film;λ_film = Wavelength of light/Refractive index of benzene
Thus; λ_film = 585 x 10^(-9)/1.5
λ_film = 39 x 10^(-8) m
Now, to find the thickness, we'll use the formula;
2t = ½m(λ_film)
Where;
t is the thickness of the film
m is an integer which we will take as 1
Thus;
2t = ½ x 1 x 39 x 10^(-8)
2t = 19.5 x 10^(-8)
Divide both sides by 2 to give;
t = 9.75 x 10^(-8) m