Answer:
I believe a wedge and a lever
Explanation:
Answer:
Wn = 9.14 x 10¹⁷ N
Explanation:
First we need to find our mass. For this purpose we use the following formula:
W = mg
m = W/g
where,
W = Weight = 675 N
g = Acceleration due to gravity on Surface of Earth = 9.8 m/s²
m = Mass = ?
Therefore,
m = (675 N)/(9.8 m/s²)
m = 68.88 kg
Now, we need to find the value of acceleration due to gravity on the surface of Neutron Star. For this purpose we use the following formula:
gn = (G)(Mn)/(Rn)²
where,
gn = acceleration due to gravity on surface of neutron star = ?
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
Mn = Mass of Neutron Star = Mass of Sun = 1.99 x 10³⁰ kg
Rn = Radius of neutron Star = 20 km/2 = 10 km = 10000 m
Therefore,
gn = (6.67 x 10⁻¹¹ N.m²/kg²)(1.99 x 10³⁰ kg)/(10000)
gn = 13.27 x 10¹⁵ m/s²
Now, my weight on neutron star will be:
Wn = m(gn)
Wn = (68.88)(13.27 x 10¹⁵ m/s²)
<u>Wn = 9.14 x 10¹⁷ N</u>
Answer:
4. total energy
Explanation:
According to Bernoulli's principle at any two points along a streamline flow The total energy that is sum of pressure energy , Kinetic energy and potential energy of the liquid all taken in per unit volume remains constant. Therefore,
for ideal fluid flows through a pipe of variable cross section without any friction. The fluid completely fills the pipe. At any given point in the pipe, the fluid has a constant Total Energy.
Is always virtual (meaning that the light rays do not actually come from the image), upright, and of the same shape and size as the object it is reflecting. A virtual image is a copy of an object formed at the location from which the light rays appear to come.