1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vodomira [7]
3 years ago
7

Calculating acceleration worksheet

Physics
1 answer:
MrRissso [65]3 years ago
8 0
Yes bc math, numbers and more
You might be interested in
What is a moment of a force
kirza4 [7]

Answer:

In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment, moment of force, rotational force or turning effect, depending on the field of study. The concept originated with the studies by Archimedes of the usage of levers

7 0
2 years ago
Soil can best be described as the
Rom4ik [11]
<span>The correct option is D. Soil can best be described as the loose covering of weathered rocks and decaying organic matter. There are different types of soil, the type of soil formed depends majorly on the type of parent rock from which the soil is formed and the amount of organic matter present in the soil.</span>
5 0
3 years ago
A force acts on a 9.90 kg mobile object that moves from an initial position of to a final position of in 5.40 s. Find (a) the wo
horrorfan [7]

Given that,

Mass of object = 9.90 kg

Time =5.40 s

Suppose the force is (2.00i + 9.00j + 5.30k) N, initial position is (2.70i - 2.90j + 5.50k) m and final position is (-4.10i + 3.30j + 5.40k) m.

We need to calculate the displacement

Using formula of displacement

s=r_{2}-r_{1}

Where, r_{1} = initial position

r_{2} = final position

Put the value into the formula

s= (-4.10i + 3.30j + 5.40k)-(2.70i - 2.90j + 5.50k)

s= -6.80i+6.20j-0.1k

(a). We need to calculate the work done on the object

Using formula of work done

W=F\cdot s

Put the value into the formula

W=(2.00i + 9.00j + 5.30k)\cdot (-6.80i+6.20j-0.1k)

W=-13.6+55.8-0.53

W=41.67\ J

(b). We need to calculate the average power due to the force during that interval

Using formula of power

P=\dfrac{W}{t}

Where, P = power

W = work

t = time

Put the value into the formula

P=\dfrac{41.67}{5.40}

P=7.71\ Watt

(c). We need to calculate the angle between vectors

Using formula of angle

\theta=\cos^{-1}(\dfrac{r_{1}r_{2}}{|r_{1}||r_{2}|})

Put the value into the formula

\theta=\cos^{-1}\dfrac{(-4.10i + 3.30j + 5.40k)\cdot(2.70i - 2.90j + 5.50k)}{7.54\times6.778})

\theta=79.7^{\circ}

Hence, (a). The work done on the object by the force in the 5.40 s interval is 41.67 J.

(b). The average power due to the force during that interval is 7.71 Watt.

(c).  The angle between vectors is 79.7°

7 0
3 years ago
Three laws that indicate a chemical change
alexandr1967 [171]

Temperature, The highness, and the time.

Hope this helps!

C=

4 0
3 years ago
Which object has the most gravitational potential energy?
Kipish [7]

Answer: An 8 kg book at a height of 3 m has the most gravitational potential energy.

Explanation:

Gravitational potential energy is the product of mass of object, height of object and gravitational field.

So, formula to calculate gravitational potential energy is as follows.

U = mgh

where,

m = mass of object

g = gravitational field = 9.81 m/s^{2}

h = height of object

(A) m = 5 kg and h = 2m

Therefore, its gravitational potential energy is calculated as follows.

U = mgh\\= 5 kg \times 9.81 m/s^{2} \times 2 m\\= 98.1 J    (1 J = kg m^{2}/s^{2})

(B) m = 8 kg and h = 2 m

Therefore, its gravitational potential energy is calculated as follows.

U = mgh\\= 8 kg \times 9.81 m/s^{2} \times 2 m\\= 156.96 J    (1 J = kg m^{2}/s^{2})

(C) m = 8 kg and h = 3 m

Therefore, its gravitational potential energy is calculated as follows.

U = mgh\\= 8 kg \times 9.81 m/s^{2} \times 3 m\\= 235.44 J    (1 J = kg m^{2}/s^{2})

(D) m = 5 kg and h = 3 m

Therefore, its gravitational potential energy is calculated as follows.

U = mgh\\= 5 kg \times 9.81 m/s^{2} \times 3 m\\= 147.15 J    (1 J = kg m^{2}/s^{2})

Thus, we can conclude that an 8 kg book at a height of 3 m has the most gravitational potential energy.

3 0
3 years ago
Other questions:
  • If two cars with the same mass( cars a and b) are moving but one (car b) is moving at twice the speed of car a ?
    7·1 answer
  • A 58-kg skater is standing still in front of a wall. By pushing against the wall she propels herself backward with a velocity of
    9·1 answer
  • What do I due about strict teachers
    5·1 answer
  • A mineral has the following properties: low hardness (can't scratch a penny), red color and streak, low specific gravity (densit
    14·1 answer
  • 1. Given an element's atomic number and mass number, how can you tell the number of protons and neutrons in its nucleus?
    5·2 answers
  • Explain centripetal force, is it a force? When does it occur, give a cartoon example or a movie example.
    6·1 answer
  • Obtain a relation for the distance travelled by an object moving with a uniform acceleration in the interval between 4th and 5th
    15·1 answer
  • 3. One effective method for coping with change is using:
    14·1 answer
  • If an object's velocity changes from 25 meters per second to
    5·2 answers
  • The electric motor of a model train accelerates the train from rest to 0.540 m/s in 27.0 ms. The total mass of the train is 610
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!