Answer:
In this reaction, sodium hydroxide (NaOH) disassociates into sodium (Na+) and hydroxide (OH-) ions when dissolved in water, thereby releasing OH- ions into solution. Arrhenius acids are substances which produce hydrogen ions in solution. Arrhenius bases are substances which produce hydroxide ions in solution.
Answer:
a. The total momentum of the trolleys which are at rest before the separation is zero
b. The total momentum of the trolleys after separation is zero
c. The momentum of the 2 kg trolley after separation is 12 kg·m/s
d. The momentum of the 3 kg trolley is -12 kg·m/s
e. The velocity of the 3 kg trolley = -4 m/s
Explanation:
a. The total momentum of the trolleys which are at rest before the separation is zero
b. By the principle of the conservation of linear momentum, the total momentum of the trolleys after separation = The total momentum of the trolleys before separation = 0
c. The momentum of the 2 kg trolley after separation = Mass × Velocity = 2 kg × 6 m/s = 12 kg·m/s
d. Given that the total momentum of the trolleys after separation is zero, the momentum of the 3 kg trolley is equal and opposite to the momentum of the 2 kg trolley = -12 kg·m/s
e. The momentum of the 3 kg trolley = Mass of the 3 kg Trolley × Velocity of the 3 kg trolley
∴ The momentum of the 3 kg trolley = 3 kg × Velocity of the 3 kg trolley = -12 kg·m/s
The velocity of the 3 kg trolley = -12 kg·m/s/(3 kg) = -4 m/s
Answer:
The horizontal displacement of the arrow is not larger than the banana split.
Explanation:
Using y - y₀ = ut - 1/2gt², we find the time it takes the arrow to drop to the ground from the top of mount Everest.
So, y₀ = elevation of Mount Everest = 29029 ft = 29029 × 1ft = 29029 × 0.3048 m = 8848.04 m, y = final position of arrow = 0 m, u = initial vertical speed of arrow = 0 m/s, g = acceleration due to gravity = 9.8 m/s² and t = time taken for arrow to fall to the ground.
y - y₀ = ut - 1/2gt²
0 - y₀ = 0 × t - 1/2gt²
-y₀ = -1/2gt²
t² = 2y₀/g
t = √(2y₀/g)
Substituting the values of the variables, we have
t = √(2y₀/g)
= √(2 × 8848.04 m/9.8 m/s²)
= √(17696.08 m/9.8 m/s²)
= √(1805.72 s²)
= 42.5 s
The horizontal distance the arrow moves is thus d = vt where v = maximum firing speed of arrow = 100 m/s and t = 42.5 s
So, d = vt
= 100 m/s × 42.5 s
= 4250 m
= 4.25 km
Since d = 4.25 km < 7.32 km, the horizontal displacement of the arrow is not larger than the banana split.
Answer:
10 times
Explanation:
The weight of the person is defined as the product of mass of person and the acceleration due to gravity of that planet.
Let the gravity is g.
W = m x g .... (1)
Now the value of g depends on the mass of earth when the radius of earth is constant.
g' = 10 g
So, W' = m x g' = m x 10 g = 10 mg = 10 W (from (1)
So, the weight of the person becomes 10 times.