1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ICE Princess25 [194]
3 years ago
8

A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a un

iform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.
Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?
Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?
Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar.
Physics
1 answer:
Kamila [148]3 years ago
3 0

Answer:

<em>a) 6738.27 J</em>

<em>b) 61.908 J</em>

<em>c)  </em>\frac{4492.18}{v_{car} ^{2} }

<em></em>

Explanation:

The complete question is

A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.

Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?

Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?

Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar. Enter an expression for the mass of the car, in terms of the quantities defined here.

moment of inertia is given as

I = \frac{1}{2}mr^{2}

where m is the mass of the flywheel,

and r is the radius of the flywheel

for the flywheel with radius 1.1 m

and mass 11 kg

moment of inertia will be

I =  \frac{1}{2}*11*1.1^{2} = 6.655 kg-m^2

The maximum speed of the flywheel = 35 m/s

we know that v = ωr

where v is the linear speed = 35 m/s

ω = angular speed

r = radius

therefore,

ω = v/r = 35/1.1 = 31.82 rad/s

maximum rotational energy of the flywheel will be

E = Iw^{2} = 6.655 x 31.82^{2} = <em>6738.27 J</em>

<em></em>

b) second flywheel  has

radius = 2.8 m

mass = 16 kg

moment of inertia is

I = \frac{1}{2}mr^{2} =  \frac{1}{2}*16*2.8^{2} = 62.72 kg-m^2

According to conservation of angular momentum, the total initial angular momentum of the first flywheel, must be equal to the total final angular momentum of the combination two flywheels

for the first flywheel, rotational momentum = Iw = 6.655 x 31.82 = 211.76 kg-m^2-rad/s

for their combination, the rotational momentum is

(I_{1} +I_{2} )w

where the subscripts 1 and 2 indicates the values first and second  flywheels

(I_{1} +I_{2} )w = (6.655 + 62.72)ω

where ω here is their final angular momentum together

==> 69.375ω

Equating the two rotational momenta, we have

211.76 = 69.375ω

ω = 211.76/69.375 = 3.05 rad/s

Therefore, the energy stored in the first flywheel in this situation is

E = Iw^{2} = 6.655 x 3.05^{2} = <em>61.908 J</em>

<em></em>

<em></em>

c) one third of the initial energy of the flywheel is

6738.27/3 = 2246.09 J

For the car, the kinetic energy = \frac{1}{2}mv_{car} ^{2}

where m is the mass of the car

v_{car} is the velocity of the car

Equating the energy

2246.09 =  \frac{1}{2}mv_{car} ^{2}

making m the subject of the formula

mass of the car m = \frac{4492.18}{v_{car} ^{2} }

You might be interested in
the system shown above is released from rest. if friction is negligible, the acceleration of the 4.0 kg block sliding on the tab
JulsSmile [24]

The acceleration of the first block (4 kg) is -9.8 m/s².

The given parameters:

  • <em>Mass of the first block, m₁ = 4.0 kg</em>
  • <em>Mass of the second block, m₂ = 2.0 kg</em>

The net force on the system of the two blocks is calculated as follows;

m_2 g - T = m_1 a

where;

  • <em>T </em><em>is the tension in the connecting string due weight of the first block</em>

m_2 g - m_1 g = m_1 a\\\\a = \frac{m_2 g - m_1g}{m_1} \\\\a = \frac{g(m_2 - m_1)}{m_1} \\\\a = \frac{9.8(2-4)}{2} \\\\a = -9.8 \ m/s^2

Thus, the acceleration of the first block (4 kg) is -9.8 m/s².

Learn more about net force on two connected blocks here: brainly.com/question/13539944

5 0
3 years ago
The force diagram shown here describes the forces that external objects (the surface andEarth) exert on a woman (in this scenari
sveticcg [70]

The three different motions are;

  • The upward motion of the woman is constant
  • The downward motion of the woman is also constant
  • The horizontal motion of the woman is zero.

<h3>What is force diagram?</h3>

Force diagram is a pictorial or graphical illustration of different forces acting on object.

In this given question, there two forces acting on the woman as depicted in the force diagram.

  • The first force is surface force (Fs)
  • The second force is force of Earth (FE)

In the given force diagram, the woman is in equilibrium, this implies that the surface force and the Earth force are equal.

The three different types of motion of the woman that are consistent with the force diagram include the following;

  • The upward motion of the woman is constant
  • The downward motion of the woman is also constant
  • The horizontal motion of the woman is zero since there is no horizontal force on the woman.

Learn more about force diagram here: brainly.com/question/3624253

#SPJ1

4 0
1 year ago
A string is tied between two posts separated by 2.4 m. When the string is driven by an oscillator at frequency 567 Hz, 5 points
Alex787 [66]

Explanation:

The given data is as follows.

       Length (l) = 2.4 m

       Frequency (f) = 567 Hz

Formula to calculate the speed of a transverse wave is as follows.

                  f = \frac{5}{2l} \times v

Putting the gicven values into the above formula as follows.

                  f = \frac{5}{2l} \times v

                 567 Hz = \frac{5}{2 \times 2.4 m} \times v

                      v = 544.32 m/s

Thus, we can conclude that the speed (in m/s) of a transverse wave on this string is 544.32 m/s.

5 0
3 years ago
Suppose you are standing at the earth's geographic north magnetic pole, the place on the earth's surface that compasses point to
Brut [27]

Answer:

It would point up.

Explanation:

Since I am at the earth's geographic north magnetic pole, the place on the earth's surface that compasses point toward, the north pole of the compass would also point towards the earth's geographic north magnetic pole, since all other compasses point toward there.

Since the compass is free to swivel in any direction, the compass would point up, since it is at the earth's geographic north magnetic pole, the place on the earth's surface that compasses point toward.

So, the compass would point up.

7 0
3 years ago
Write about the similarities and differences between kinetic and potential energy. Include specific, real world example in your
lord [1]

Answer:

Energy is transformed from potential to kinetic and vice versa

Explanation:

The energy is transformed from mechanical to kinetic energy when the object changes its position with respect to a reference point, where it loses height but increases its speed. When the object is at maximum height with respect to a reference point, it will have its maximum potential energy value. When the object passes through the reference point it will have potential energy equal to zero, but this energy will become kinetic energy.

The most characteristic and real example is that of a pendulum at one end, as can be seen in the attached image.

When the pendulum is located at the top end, as shown in Figure 1, at that point the maximum potential energy will be held. Then the pendulum is released and when it passes through the reference point and its height is zero, with respect to that point, all potential energy will have become kinetic energy in the same way at this point the maximum speed of the pendulum will be set.

8 0
3 years ago
Other questions:
  • Mass is measured using _____.
    7·2 answers
  • Difference between impulse and impulsive force
    11·2 answers
  • The frequency of which type of electromagnetic wave is just higher than that of visible light?
    6·1 answer
  • Light of the same wavelength passes through two diffraction gratings. One grating has 4000 lines/cm, and the other one has 6000
    7·1 answer
  • I know what the answer is to part A but not part B
    15·2 answers
  • Three points A, B and C are located along a horizontal line. A positive test charge is released from rest at C and accelerates t
    10·1 answer
  • The energy of moving things are called​
    8·1 answer
  • A woman hikes 2.5 kilometers in 30 minutes, and then 3 kilometers in 20 minutes, and finally 2 kilometers in 10 minutes. What wa
    5·1 answer
  • Answer the questions to help you understand your parachute and forces experiment. Use the data table below to record your data.
    12·1 answer
  • I would appreciate your help​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!