Answer:
8.8 m and 52.5 m
Explanation:
The vertical component and horizontal component of water velocity leaving the hose are


Neglect air resistance, vertically speaking, gravitational acceleration g = -9.8m/s2 is the only thing that affects water motion. We can find the time t that it takes to reach the blaze 10m above ground level



t = 3.49 or t = 0.58
We have 2 solutions for t, one is 0.58 when it first reach the blaze during the 1st shoot up, the other is 3.49s when it falls down
t is also the times it takes to travel across horizontally. We can use this to compute the horizontal distance between the fire-fighters and the building


Every electrical outlet in your house, and every device or appliance that's
plugged into an outlet, are all in parallel. It's also most likely that all of yours
are in parallel with all the outlets, devices, and appliances in the homes or
apartments of a few of your neighbors.
The only things in your home that are connected in series are the switches
that turn things on and off.
Answer:
The answer is
<h2>7,840,000 J</h2>
Explanation:
The kinetic energy KE of an object given it's mass and velocity can be found by using the formula

where
m is the mass
v is the velocity
From the question
m = 20000kg
v = 28 m/s
It's kinetic energy is

We have the final answer as
<h3>7,840,000 J</h3>
Hope this helps you
Answer:
Θ
Θ
Θ = 
Explanation:
Applying the law of conservation of momentum, we have:
Δ

Θ (Equation 1)
Δ

Θ (Equation 2)
From Equation 1:
Θ
From Equation 2:
sinΘ = 

Replacing Equation 3 in Equation 4:


Θ (Equation 5)
And we found Θ from the Equation 5:
tanΘ=
Θ=